Availability
- Concepts and Principles for the Practitioner -

Tim C. Adams
NASA
Kennedy Space Center
Engineering
Tim.Adams@NASA.gov

September 11, 2019
Table of Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Ideal input data to measure Availability</td>
</tr>
<tr>
<td>3</td>
<td>Defining RMA</td>
</tr>
<tr>
<td>4&5</td>
<td>Types of Availability—and where to start</td>
</tr>
<tr>
<td>6</td>
<td>Using RMA to make likelihood in a risk statement</td>
</tr>
<tr>
<td>7</td>
<td>Why say RMA and not RAM?</td>
</tr>
<tr>
<td>8</td>
<td>Inherent Limiting Availability as a Design Guideline</td>
</tr>
<tr>
<td>9</td>
<td>Availability and the Four Combinations of R and M</td>
</tr>
<tr>
<td>10</td>
<td>Modeling uptime (reliability) for a single repairable item</td>
</tr>
<tr>
<td>11</td>
<td>Modeling an uptime state (availability) for a repairable system</td>
</tr>
<tr>
<td>12&13</td>
<td>Establishing the Availability Requirement</td>
</tr>
<tr>
<td>14</td>
<td>Tools: Allocating and Reporting Availability</td>
</tr>
<tr>
<td>15</td>
<td>Reference: URLs for presentation hyperlinks</td>
</tr>
</tbody>
</table>
Ideal input data to measure Availability

Uptime-Downtime Charts for Actual Hardware

System A

98 days* 1 day* 15 days* 84 days* 212 days* 144 days* 466 days* 61 days c
7 days** 7 days** 49 days** 1 day** 2 days** 15 days** 7 days**
1173 days

System B

34 days* 84 days** 971 days* 61 days c
971 days*
24 days**
1173 days

Notes:
* denotes Uptime or operated ** denotes Downtime or under repair c denotes still operating Charts are not to the scale
Defining RMA
- 3 of the 9 Dimensions of Engineering Assurance -

- **Reliability** (R) is the probability an item will be in an uptime state (i.e., fully operational or ready) to perform its intended function *without failure* for a stated mission time under stated conditions.

- **Maintainability** (M) is the probability an item in a downtime state will be returned to an uptime state within a given period of time.

- **Availability** (A) is a mathematical function of Reliability and Maintainability (R&M) and is the probability a repairable item will perform its intended function at a given point in time (or over a specified period of time) when operated and maintained in a prescribed manner. Other words, availability is the probability of an item’s mission readiness, an uptime state with the likelihood of recovering from a downtime state.
Types of Availability

- **Demonstrated availability**
 - Uses actual historical data
 - \(\frac{\text{uptime}}{\text{uptime + downtime}} = \frac{\text{uptime}}{\text{total required time}} \)

- **Predictive availability** has three ways to define uptime and downtime.
 - **Inherent availability**: Uses only the failure distribution and repair distribution
 - **Achieved availability**: Includes preventive or scheduled maintenance actions
 - **Operational availability**: Includes logistics and administrative delay times

And Predictive availability has three ways to treat mission time.
 - **Point** (instantaneous) availability at time \(t \)
 - **Average** (interval, mission) availability during the time period from \(t_1 \) to \(t_2 \)
 - **Limiting** (steady-state, asymptotic) availability as time \((t_2) \) becomes large

- For additional information
 - See [Availability Types and Formulas for Inherent Availability](#)
Tip: Start with Inherent Limiting Availability.

- There is much to do even with this form of availability. See RMA Tasks

Why?

- From a design point of view and especially in regards to collecting input data, determining inherent availability is easier than achieved availability, and determining achieved availability is easier than operational availability. Operational availability especially involves resources and trade-offs external to the design engineering organization—and many times this data does not exist.

Note: Point in time vs. or Near-term time interval vs. Time is infinite:

- Both Point and Average Availabilities in time converge to Limiting Availability
- Infinity sometimes is not that far away! For example, within six-decimal places (0.995025), Point Availability equals Limiting Availability when mission time = 90 time units, MTBF = 2000, MTTR = 10, and the availability math model uses constant failure rate and constant repair rate.
When risk is viewed only as potential loss, “potential” is the likelihood (probability) that a scenario and associated “loss” will occur.

- For a brief summary on risk, see Risk Concept & Operation

Use the complement of the R, M, or A probabilities to make the failure probability. That is,

- 1-R, 1-M, or 1-A = p_f

Tip: To approximate 1-A as Limiting Unavailability:

- 1-A ≈ MTTR/MTBF = (1-A)/A = λ/μ
- For an Excel illustration, see Worksheet 2 in RMA Dashboard
Why say RMA and not RAM?

“Say it the way we should do it.”

• “… the words you have at your disposal frame how you [and our decision makers] see the world.”

That is …

• First, design for reliability (DfR).
• Second, if reliability is not sufficient, design for maintainability (DfM).
• When an item entails both R and M, the performance metric is availability (A) and is a mathematical function of R and M.

Tip: If the forecasted A is less than the allocated “design to” specification, then as a guideline, increase R before decreasing M.
When Inherent Limiting Availability (A_{inh}) is specified, then:

- $MTTR = [(1 - A_{inh})/ (A_{inh})] \times MTBF$
- Or simply: $MTTR = \text{slope} \times MTBF$ where slope is the MTTR factor

Tip: In practice, the above equations should use \leq instead of $=.$

- Thus, $MTTR$ is an upper-bound value
- And $MTBF$ and $availability$ are each lower-bound “design to” values

Tip: Availability measures typically relate to one of four combinations of R and M (each being either high or low).

- Two combinations provide the same availability measure; one combination can be unsafe when compared to the other combination
- See next page for details
Availability and the Four Combinations of R and M

- Preferences 2 and 3 can make same availability measure
- Preference 2 has less risk than preference 3

<table>
<thead>
<tr>
<th>Reliability</th>
<th>Maintainability</th>
<th>Preference</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Low</td>
<td># 1</td>
</tr>
<tr>
<td>High</td>
<td>High</td>
<td># 2</td>
</tr>
<tr>
<td>Low</td>
<td>Low</td>
<td># 3</td>
</tr>
<tr>
<td>Low</td>
<td>High</td>
<td># 4</td>
</tr>
</tbody>
</table>

- To explore these combinations, see the RMA Quantitative Relationships and/or the RMA Dashboard Excel files
Modeling uptime (reliability) for a single repairable item

- The Weibull distribution for example can model uptime data for a single repairable item when the repair process is “as-good-as-new.” However,

- When the renewal process is not restored to its original condition, the average or mean time between failure (MTBF) will change (i.e., typically decrease over time due to minimal repair).

- As the result of minimal repair, the intensity function is used (or least determine if needed) instead of the hazard rate function.
 - When the times to failure data are not reordered from small to large, the Laplace Test can be used to test for a trend.
 - A Laplace Test score around zero means the process is stationary (defined on next page). Thus, the MTBF is constant and is not changing over time.
Modeling an uptime state or mission readiness (availability) for a repairable system

- In general, the Boolean formulas that model system reliability also model system availability.

- **Tip**: The union of all failure events from numerous independent renewal processes is called a superimposed renewal process.
 - This process in time will become a homogenous Poisson process (HPP) ideally if each item in the system has failed at least one time.
 - The Poisson distribution function describes failure events that occur randomly and at a constant average rate.
 - An HPP is a stationary point process since the distribution of the number of events in a interval of fixed length does not vary, regardless of when (where) the interval is sampled. (Ref. O’Connor, 4th ed)

- Although each item may have a nonconstant failure rate, eventually a steady-state failure rate for the system is observed.
Establishing the Availability Requirement

- Availability as with any goal or specification that pertains to an operational (as opposed to a physical) characteristic of an item:
 - Is more from human judgement than engineering.
 - Is a probability value in the interval from demonstrated past performance (or peer performance) to predicted potential performance.
 - In spite of the reliance on probabilistic (as opposed to deterministic) thinking, analytical methods are used such as:

- **Rule of Thumb:**
 - 1 per 1,000,000 ≈ 1/16-inch per one mile (actually, 98.64% of 1 mile).
 - \(p_f \) is related to a concrete concept instead of an abstract one (e.g., \(10^{-6} \))!

- **Tool (calculator):**
 - Mission vs. Program Reliability: Probability of \(x \) or more events
What is the availability of your electricity provider?

How much **unavailability** and associated **downtime** can you accept?

<table>
<thead>
<tr>
<th>IF</th>
<th>THEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability electric power is ...</td>
<td>Expected electric power unavailability in one year is ...</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>0.99</td>
<td>0.01</td>
</tr>
<tr>
<td>0.999</td>
<td>0.001</td>
</tr>
<tr>
<td>0.9999</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.99999</td>
<td>0.00001</td>
</tr>
<tr>
<td>0.999999</td>
<td>0.000001</td>
</tr>
<tr>
<td>0.9999999</td>
<td>0.0000001</td>
</tr>
</tbody>
</table>
Tools: Allocating and Reporting Availability

Allocate availability with or without margin:

- The last worksheet in this Excel file [RMA Quantitative Relationships](#) equally allocates availability of a system to serial subsystems.
- This method provides a minimum-bound “design to” availability goal for each subsystem.
- Regardless the math models used, the reliability (availability) at the system level is never greater than the particular serial subsystem containing the lowest reliability (availability).

Rolling up, assessing, and reporting RMA from the subsystem level to the system level:

- This Excel file [RMA Dashboard](#) provides a work process with example that enters (posts) serial subsystem MTBF and MTTR values and then calculates reliability and the three types of availability (based on constant failure and repair rates) both at the subsystem and system level levels.
Reference

<table>
<thead>
<tr>
<th>Presentation Hyperlinks</th>
<th>URLs from “KSC Reliability”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability Types and Formulas for Inherent Availability</td>
<td>https://kscddms.ksc.nasa.gov/Reliability/Availability.html</td>
</tr>
<tr>
<td>RMA Tasks</td>
<td>https://kscddms.ksc.nasa.gov/Reliability/Documents/160122_RMA_Tasks.pdf</td>
</tr>
<tr>
<td>RMA Dashboard</td>
<td>https://kscddms.ksc.nasa.gov/Reliability/Documents/170310.4_RMA_Dashboard_with_example.xlsm</td>
</tr>
<tr>
<td>RMA Quantitative Relationships</td>
<td>https://kscddms.ksc.nasa.gov/Reliability/Documents/190910_RMA_Quantitative_Relationships_and_Allocate_Availability.xlsm</td>
</tr>
<tr>
<td>Laplace Test</td>
<td>https://kscddms.ksc.nasa.gov/Reliability/Documents/Laplace_Test.pdf</td>
</tr>
<tr>
<td>homogenous Poisson process</td>
<td>https://kscddms.ksc.nasa.gov/Reliability/Documents/160503_Poisson_Process_Prob_of_r_or_less_events_in_a_time_interval.xlsx</td>
</tr>
<tr>
<td>Probability of x or more events</td>
<td>https://kscddms.ksc.nasa.gov/Reliability/Documents/Binomial/reliabilityProb.xls</td>
</tr>
</tbody>
</table>