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Mechanical reliability is one of the sparsely covered areas of reliability. Few 
comprehensive books exist. Most do not cover the full range of subjects that do exist. 
Additional references are made to help the reader.  
 
Basic Mechanical Engineering - This includes how to set up and organize basic 
mechanical engineering. The simple concepts of stress, strain, tension, shear and fatigue 
are introduced. Extensive equations and complex situations are avoided in favor of 
simplicity. The stress-load approach is the basis of many of the examples.  
 
Time Dependence - Most examples in reliability are based upon static models where 
cumulative fatigue is often ignored. Several approaches are shown that permit the 
inclusion of time into simple models and so show how to model degradation, fatigue or 
other similar dynamic situations. Coffin-Manson, cyclic stresses and other models are 
presented. 
 
Accelerated Life - Mechanical reliability situations often involve difficult or hard to 
accelerate materials or systems. This short book shows some of the problems and 
solutions for these situations. 
 
Non-Normal Distributions - Many situations arise where one or more of the strength or 
load distributions are non-normal. Weibull, lognormal, extreme value are all possibilities. 
This often changes the analysis and results. 
 
Miner's Rule - This basic model is presented as well as limits. This simple model is one 
of the approaches for covering a dynamic spectrum of stresses. 
 
Confidence Limits - Learn several simple approaches for establishing confidence limits 
on reliability data.  
 
Costs - A short addendum on costs related to projects is included in this book. This 
critical topic is often left out in most books. 
 
Reliability Prediction - An extensive example of how to make a prediction is shown. 
This includes bottom up approaches and the use of standard books. 

 
Copyright Advisory – Copyright is held by the Reliability Division of ASQ. Abstracting is 
permitted with credit to source. No reprint or circulation is allowed without specific permission. 
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Preface - Second Edition 

Updated and Improved 
 
 
 This first edition of this monograph created a lot of interest in mechanical reliability 
topics. While the world is primarily electronic, all of the packages, circuit boards, enclosures, 
housing are mechanical. These primarily serve to protect and support the electronics within. As 
semiconductor die shrink and simultaneously increase in power, operate at Gigahertz frequencies 
the packaging becomes a bigger and bigger issue. Heat conduction, cooling, high frequency 
termination, compatibility with lead free solder, and ability to remain firmly attached to circuit 
boards is an increasing challenge. Since the original monograph in 1998, MEMS technology and 
a host of small scale devices have made an understanding of mechanical reliability more 
important. Every quality engineer, manufacturing engineer, reliability engineer and project 
manager should be familiar with more of these topics, if only at a basic level. Material properties, 
magneto-striction, thin films, seals, corrosion, wear out, implantable devices and sensors 
combined with quantum effects will dominate the next 10 years of reliability. 
 

This monograph will remain short, simple and to the point for all of its examples. This 
makes it easy to follow for quality and reliability engineers. No prior extensive mechanical or 
reliability knowledge is assumed. The use of statistics remains at a minimum and the background 
formulas shown where it would be useful to the reader. A wide variety of simple and useful 
examples are shown in the text. The author has presented a much longer reference list and a 
number of web sources for those topics that might be of interest to the practical reliability 
engineer. Excessive use of statistical tools has been avoided because most engineers find the 
language of statistics to be foreign and often obscures the engineering. There are plenty of 
statistics books on the market, if that is the desire of the reader.  
 
 The first edition contained the following promise. It is still true of the second edition. 
  
 This short monograph is in no way complete. So many more topics do exist that could 
be covered in greater detail. Some of these topics will be presented in a future edition.  
 
 
 
James McLinn CRE, Fellow ASQ 
Hanover, Minnesota  
February 2010 
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Preface - First Edition 

 
 
 This monograph was initially created out of response for the desire for a simple, 
introductory group of mechanical reliability topics.  It began as a series of five articles in 
Reliability Review.  When begun there were only two available texts. Both were primarily 
theoretical and written for a one quarter college course.  This monograph will be found to be 
short, simple and to the point for most reliability and quality engineers. No prior extensive 
mechanical or reliability knowledge is assumed. The use of statistics is kept to a minimum and 
the background formulas shown where it would be useful to the reader. A wide variety of simple 
and useful examples are shown in the text. The author has presented a much longer reading list 
and a number of other sources for those topics that might be of interest to the practical reliability 
engineer. Excessive use of or dependence on statistical tools has been avoided because most 
engineers find the language of statistics to be foreign and often obscures the engineering or 
business point being studied. Enjoy this, show it to your co-workers and when you are ready 
move beyond it to the bigger books and texts that provide many more details. A reading list exists 
at the end for additional related topics. These are primarily from recent journals. 
 
 The author also wishes to thank the many people who reviewed this work in its various 
iterations and provided helpful comments. Many called to ask about the series, commented about 
the examples and provided insight to improving them. 
 
 This short monograph is in no way complete. So many more topics do exist that could be 
covered in greater detail. Some of these will be presented in a future edition.  
 
 
James McLinn 
Hanover, Minnesota  
June 1998 
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Mechanical Design - Reliability Primer  
 

1.0 Simple Approaches to Common Problems of Design, Manufacture and Field 
Situations 
 
 Modern reliability tools and techniques have developed primarily 30 to 50 years ago.  
Reliability books in the last 30 years have been primarily devoted to the evolving electronic 
industry. This situation is highly ironic for mechanical reliability applications have been around 
over 5000 years. This ancient knowledge formed the basis for much of the well recognized 
modern electronic applications. The oldest reliability references can be found on ancient 
Sumerian clay tablets from about 2500 BC [1]. They stated that houses were to meet minimum 
structural standards and could not fall down upon the occupants under penalty of death of the 
builder. This millennium (3000 to 2000 BC) seemed to be part of a world wide building boom. 
Stonehenge, many pyramids and a variety of smaller structures sprang up all over the world. 
These structures seem to represent attempts to create lasting monuments.  This wasn't done in a 
vacuum. The larger pyramids such as at Giza have smaller and older, practice pyramids nearby. 
The Egyptians slowly learned the basic engineering principles and then expanded them over 
hundreds of years. The Romans also had a desire to build lasting structures. They expanded the 
older Mesopotamian knowledge of water movement by expanding  and improving aqueducts and 
arch bridges. The Romans are best known for lasting roads, many buildings, the Coliseum and a 
variety of structures during their Pax Romana. Many of these now ancient structures still exist in 
working order. Other cultures also shared in the lust to build lasting structures in stone. These 
include Stonehenge in England, the Parthenon in Athens and the massive stone temples and cities 
of the Inca world. 
 All of the structural (mechanical reliability) principles in use from the ancient times were 
based upon slowly gained knowledge of materials, geometry, structures and included anticipated 
aging of these structures. The plane, fulcrum, Archimedes screw, early concepts of tension versus 
shear all were in use. Simple mathematical models probably existed for some of the structures, 
but it is not clear how detailed these models might have been. What exactly does this have to do 
with modern mechanical reliability? Many of the modern mechanical reliability applications  that 
cover materials and common structures are very similar to the knowledge gained from the past. 
Today, plastics, steels and aluminum have replaced wood, stone, copper and iron, but the 
application principals have changed very little. We benefit today by the wealth of reliability 
models and the development of advanced mathematics that describe complex situations. These 
permit descriptions of a variety of different potential applications. A short review of history has 
shown that these principles were preserved and came to fruition again at the end of the dark ages 
with the building of large churches, castles and cities. These set the stage for more modern 
structures. Eventually  schools of architecture were founded and the subject taught in the 
university by the late 1600s. Christopher Wren was perhaps the most famous architect of that 
time.  He built a number of famous structures and rebuilt older ones. Some of these older 
structures, such as the 400 foot cathedral spire at Salisbury England had begun sagging after only 
300 years. His solution was simple, encase the four support columns with strategically placed 
metal bands. The necessary knowledge of tension, shear and torque were all required for this 
simple solution implemented in the 1670s.  Many other people of the past have contributed to the 
knowledge we employ today. These include mathematicians such as Poisson, Gauss, Cardan, De 
Moive, Abbe and von Neumann. Additionally, people such as Newton, Hooke and Weibull have 
contributed material studies. The approaches of the recent past are very similar to those faced by 
modern mechanical engineers and reliability people. The main difference is the availability of 
more complex models and the ready use of modern computers. 
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 The following table is a short (modern) summation of some basic important approaches 
employed in many common modern situations.  These are grouped by basic approach and are tied 
to specific applications of specific reliability tools and approaches. Later, sections of this book 
will provide specific examples tying tools, applications and simple statistical models that enhance 
reliability estimation.  Basic engineering principles and models are also shown. This book will 
cover only some of these approaches. Simple principles can go a long way to providing 
reasonably accurate answers in most situations.  
 

Table 1.1 - Modern Mechanical Reliability Applications 
 

Static Applications with Constant Stress           Dynamic Applications & Stresses 
- Tension, Shear, Torsion, and   Variable, Full Reversing or Irregular 
Degradation corrosion involved    stresses in place 
 
 |   |   |   | 
       Structures         Materials         Structures Historically Based Situations 
 
The following list of more specific mechanical reliability applications can be placed under one or 
more of these broad categories above. 
 
1. Stress-Load analysis (interference) both static and dynamic situations. 

2. Modeling with distributions covering common and infrequent events. 

3. Probability estimates - Tchebycheff's, Gauss's or Camp-Meidell methods covering non-

parametric and non-symmetrical probability distribution situations. 

4. First principle modeling and physics of failure (PoF) approaches. 

5. Coefficient of variation. 

6. Part or function table information - a list of common failure modes and causes. 

7. Dynamic multiple cyclic loads with Miner's Rule. 

8. Full reversing load situations. 

9. Dynamic variable and irregular loads with reduction to equivalent cyclic stress. 

10. Monte Carlo simulation or other simulation methods. 

11. System reliability modeling. 

12. Finite Element Analysis - FEA. 

13. Failure Mode and Effects Analysis - FMEA. 

14. Hazard Analysis – HA or Health and Hazard Analysis - HHA. 

15. Fault Tree Analysis - FTA. 

16. Approaches employing the concept of entropy or system disorder. 

17. Materials limits and material fatigue concepts. 

18. Possibility of chemical attack, chemical degradation,  galvanic action or "stiction". 
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1.1 General Grouping of Mechanical Reliability Problems 
 
 Approaches to Mechanical Reliability take a number of different avenues. This is because 
there are so many different mechanical functions possible. These include a variety of structural 
problems from the construction of buildings, bridges and damns to simple metal chassis as used 
to protect electronics. In more common mechanical reliability analyses we look at the stiffness 
and strength of materials such as ceramics, fiberglass, iron and steel. Our analysis also considers 
the lubrication of metal surfaces. The variety of applications of mechanical functions can be 
grouped into similar approaches. Some approaches may be grouped as follows. This list expands 
some of the entries in Table I. 
 
 1. The types of mechanical functions required. These may vary from static to dynamic 
situations. These dynamic may be broken down into several different dynamic applications. 
 
 2. The range of stress of the mechanical part, material or system. We need to identify if 
the stresses are close to the ultimate tensile strength or any other "plastic limits" of the material. If 
below the plastic limit, we might often model these with simple elastic models.  
 
 3. Material fatigue may be an important issue to consider when accumulative fatigue or 
degradation begins to become important. Fracture mechanics are important in some high stress or 
high reliability applications.  
 
  4. Situations where the stresses are continuous in time or strength, cyclic in time or 
strength or semi-periodic or irregular in time or strength. Continuous forces, shear forces or 
pressures are more easily handled than cyclic, periodic or reversing forces. The hardest situations 
are irregular or unpredictable forces. In many situations we can lump forces into "equivalent 
groups" or reduce forces to their equivalents.   
 
 5. Variability of the forces. Can a stable mean force (or result) be identified? Is the 
variation about the mean value also stable over time or samples? Can the variation be described 
or approximated by the Normal distribution, LogNormal or Weibull. In these situations we have 
statistical results, not straight forward cause and effect results. 
 
 6. Identify the potential failure modes of a component, material, function or system and 
ultimately the root causes of failures. Knowing these can be much more important for   
mechanical situations than for electronic parts and systems. Knowledge of the causes usually 
leads directly to knowledge of improvements and preventative actions. 
 
 7. The Failure Mode Effects Analysis may be a good approach for looking at potential 
causes of system failures because there are often a small number of failure modes for many 
mechanical systems, functions, materials or parts. Many of these failure modes are tied   
closely to the way a part, material, function or system is employed ( application) or to the 
material and/or geometry present. 
 
 8. Possibility of chemical attack, galvanic action, "stiction", dendritic growth, corrosion, 
oxidation and a variety of degradation modes exist. Each of these need to be considered as a root 
cause of an eventual mechanical failure.  
 
 9. "Reduction to first principles" is a common mechanical approach. This approach is 
another way of writing down what you know, use basic engineering or physics principles   
and write a simple equation. 
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 10. Application of common accelerated life test methods for mechanical parts, materials, 
functions and systems. The problem is that many of the stress factors are either very low or very 
high. In either case it is often very difficult to identify and set up a good reasonably short 
accelerated life test. Consideration of multiple overstress tests or step-stress approaches will be 
provided.  
  

1.2 Mechanical Reliability Definitions 
 
Typically this area breaks into two types of reliability problems. 
 
 
* Mechanical parts - such as switches, relays, bearings etc. that are wear out dependent. This is an 
application of many repetitive actions with minor wear at each cycle. We typically estimate life or 
run tests to ensure reliability of a distribution. 
 
* Structural situations - Often thought of as a civil engineering situation. A material with a basic 
strength is expected to withstand the accumulation of stresses over time. Analysis of these 
situations works for housings, enclosures, buildings, bridges, dams etc.  Some reliability problems 
for parts or systems may also fall into this category. 
 

Definitions needed for Mechanical Reliability 
 
Material - A collection of defects. 
Acceptable Material - A fortuitous or organized collection of defects in a material. The material 
is characterized by having a long time to failure. 
Unacceptable Material - An unfortunate and disorganized collection of defects. The material is 
characterized by have a short time to failure. 

  
 A variety of recurrent mechanical problems are listed in Table 1.2. These are based upon 
experiences over 25 years. Not all mechanical applications have the same requirements, so it 
would not be surprising if a biomedical application had a different requirement than a consumer 
one. 
  

Table 1.2 - Top Twelve list of Mechanical Reliability Problems 
 
 1.  Always assume the worst will eventually happen. This applies especially to critical 
parts and assemblies. Know what is critical especially to the use and customers. What are the 
critical parts? How will the customer abuse the assembly? 
 
 2. Always check for tolerance stack up problems. Parts in tolerance today may not be in 
the future. Don't assume stability from the suppliers or that wear can not occur. Most of the time 
we do not know the relationship between being in specification and the ultimate reliability. A 
DOE (Design of Experiments) would help here. 
 
 3. Metal inserts in plastic parts are hard to mold well. This may lead to problems in use 
because of residual stress and will eventually cause problems through tool wear and/or part 
cracking. 
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 4. Always maximize the radii that are present. Small radii lead to high stress 
concentrations and failure prone places. Harden these areas or use harder metals where possible 
when the radii can not be increased. 
 
 5. Use as few connections as possible. This includes connectors, wire connections such as 
welds or solder joints, crimps and material connections and seals. Remember all connections are 
potentially weak points that will fail given time and stress. 
 
 6. All seals fail given time and stress. You need at least two levels of sealing to ensure the 
product will last as long as the customer expects. Remember that some materials diffuse through 
others. Perhaps three levels of seal are required. 
 
 7. Threads on bolts and screws shouldn't carry shear loads. Remember they need preloads 
and/or stretches to ensure proper loading initially. Metal stretches, fractures and corrodes as well 
as developing high stress concentrations in use under tension. Be sure to allow for this. 
 
 8. Use as few nuts, bolts and screws as possible. While these are convenient temporary 
connection methods, it is 100 year old technology. Lock washers and locktite have been 
developed to slow down the rate of loosening. All will eventually come loose anyway when there 
is stress, temperature or vibration present.  
 
 9. Belts and chains will stretch and/or slip when use to deliver power. Remember these 
types of parts need constant tension devices to aid their reliability. Again this is old technology 
that can be made reliable by careful application. (Note, this is one of the biggest field problem 
with snow-throwers.) 
 
 10. Avoid set screws as these easily come loose because of their small sizes. Even when 
used on a flat, set screws are only "temporary connection" mechanisms. Locktite only makes "the 
temporary" a little longer in the presence of stress. 
 
 11. Watch the use of metal arms to carry loads. They often deflect in an imperceptible 
manner. This is especially true when loads are dynamic. 
 
 12. Integrate as many mechanical functions as possible. Use as few separate and distinct 
mechanical parts that are joined as possible. Joints are usually unreliable. 
 

Each of these common mechanical design problems is used in common "every day life" 
situations where 10% failures per year might be acceptable or near the limit of technology        
(washing machines, other appliances, many instruments and even some cars). The same standard 
designs will not work well in high reliability applications where only 1 or 2% failures per year are 
desired or acceptable (aerospace, military, medical devices etc.). Remember the difference 
between the two applications when designing. 

 
 
1.3 - Types of Applied Loads, Stresses and Material Response 
 
 Almost all situations of mechanical engineering may be reduced to four basic classes of 
applied loads. The applied loads may in turn be described through internal stresses or even 
material strain. These stresses may be simply described as: 
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 1) Compression 
 2) Tension 
 3) Shear 
 4) Torsion  
  
All other internal stresses may be made up of combinations of these stresses be they static or 
dynamic situations. The material reliability may be measured through strength or durability 
concepts that include the following: 
 

1) The capacity to withstand a static load over a specified time and stated environmental 
conditions. 
2) The resistance to permanent internal or external deformation or damage resultant from 
by a one-time high load.  

 3) The toughness of a material under a shock load or an impact type test. 
 4) The measure of the life of a material when subjected to cyclic loads or fatigue.  
 5) The material behavior exhibited at high or low temperature, including cracking 
  creep or induced internal stress. 
 
As a rule, the applied loads are typically thought to be reflected as simple tension or compression. 
This not need be so. The loads may lead to shear or torsion stresses in addition to tension or 
compression. In the latter cases the details become more complex, but the basic approach remains 
the same. The model of the material response may vary as do the applied loads. The following 
description, as well as Figures 1.1a and Figure 1.1b, provides a generic, first-order relationship 
for a variety of materials.  
 In tension or compression testing, typically two distinct phases or different material 
responses may be identified. Figure 1.1a shows these as elastic and plastic ranges for two very 
different types of materials. The relationship of the stress, , to the response strain, , is through 
constant, E when in the elastic range. This simple expression is similar to Hooke's Law and 
applies for simple tension and compression with a similar simple relationship for shear and 
torsion. Typical mathematical equations for tension and compression are: 
 
 Elastic Materials  = E       (1.1a) 
 Plastic Materials  =  0         (1.1b) m

 
Equation 1.1a is a reasonable approximation for the elastic portion of the Stress-Strain 
relationship for many brittle and ductile materials. The constant slope in Figure 1.1a is labeled E, 
called Young's Modulus or the Modulus of Elasticity. At higher levels of stress, near the 
beginning of the plastic range the stress-strain relationship changes in a complex fashion as 
shown in Figure 1.1a and Figure 1.1b. Figure 1.1b is simple enough that Equation 1.1b models 
this plastic behavior for Titanium. The border of the plastic region in Figure 1.1a is identified by 
the term yield stress,  , which is a significant measure of many materials.  y
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Figure 1.1a - The Stress-Strain Diagram 
 
 
 

Stress 

uts 
m = 0.14 

Plastic 
Region 

E = 16.8 MPSI 

Elastic 
Region 

100 
 
80 
 
60 

KPSI 

0.1%   0.2% Strain -  

 
Figure 1.1b - An Alternate Stress-Strain Diagram for Annealed, A40 Titanium 
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1.4 Basic Principles of Mechanical Engineering 
 

The following simple equations on the next several pages form the basis of most 
mechanical engineering and mechanical reliability analyses. These equations assume that 
materials can be described as homogeneous and elastic. To first approximations this works for a 
variety of different materials; therefore many mechanical situations can be described by Hooke's 
Law (Robert Hooke, 1635-1703). This simple model describes the elastic, homogeneous and 
simple linear behavior of many materials such as plastics, metals, fiberglass, ceramics and 
composites. With the simple Hooke’s Law combined with basic physics, we can relate 
generalized Stress (S) with the Pressure (P) across an applied Area (A), with length L and change 
of length L as follows. 

 

   Stress = S = 
L

LE

A

P 
  = E      (1.2) 

 

 Where L represents a change in length, due to the stress and the  
L

L
  measures the 

change per unit length or the "strain" (epsilon-). The E is Young's Modulus (the modulus of 
elasticity) and is treated as a constant for a material and uniform in all axes. Many common 
materials have a range of elastic behavior that can be used to estimate the material response to 
applied stress. A few simple materials are shown below. 

 

Table 1.3 – Basic Properties of Common Materials 
 
 Material   Young's Modulus - E 
 

 many steels   E  = 30 x 10  lbs./in. 2   or PSI S
6

 many cast irons   E  = 20 x 10  lbs./in.   or PSI ic
6 2

 Bronze    E B  = 12 x 10  lbs./in.   or PSI 6 2

 Brass    E Br  = 15 x 10  lbs./in.   or PSI 6 2

 Aluminum   E  = 3.9 x 10 6  lbs./in.   or PSI Al
2

 concrete   E  = 3 x 10  lbs./in.   or PSI  cr
6 2

 many woods   E W  = 1 x 10  lbs./in.   or PSI 6 2

 
 Most material can change length only 0.001 to 0.002 (0.1 to 0.2%) per unit length before 
inelastic behavior or permanent damage begins to occur. Therefore, we can estimate the yield 
strength from the following relationship. 
 

 Yield Strength = E (L) = 30 x 10  lbs./in.  (0.001) = 30,000 10  lbs./in. for many 
irons and steels. Above this number the material may not remain in the elastic region. 

6 2 6 2

 
When the cross section of any material varies as a function of a dimension, we rewrite the 

basic relationship shown in (1.2) as an integral. This becomes simply: 
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   L = 
AE

PL
  = 

L

A

dx

E

P
0

       (1.3) 

 
Thus, we can calculate L for variable cross sections when a pressure P or stress is 

applied to a material along the axis described by L with the changing cross section perpendicular 
to the axis. The axis of symmetry is key in this example. 

 

Example 1.1 – Let   r  = r 1  + x L

x
(r  - r 1 )   represent the position relationship as shown in Figure 

1.2. 

2

r2 

r1 

rx 
L 

X 

P = Stress 
 

Figure 1.2 - A Truncated Cone 
 
Assumptions - 
 A) Equation 1.3 applies. 
 B) The applied stress is along one axis only. 
 C) Second order material effects will be ignored. 
 

Solving this integral for a truncated cone yields with A = r at any point x, along the cone. x
2
x

 

  L = 
)(E

P

 
L

r

dx
0 2

  = 
)(E

P


 ( )

11
)(

2112 rrrr

L



 = 

21)( rrE

P


       (1.4) 

 
This general result reduces to the standard relationship for a column when r 1  = r . For the case 

of a true cone, with r1  = 0, then the elongation becomes infinitely large.  
2

 

The unit elongation becomes  
L

L
  = 

21)( rrE

P


   under the stress, P, of 10,000 lbs. applied to 

a common steel cone that has dimensions of r 1  = 1.5 in. and r  = 3.0 in. This becomes for these 
dimensions: 

2

 

 
L

L
  = 

21)( rrE

P


 = 

.)0.3.)(5.1)(000,000,30)(1416.3(

_000,10

ininPSI

lbs
 = 0.000,023,6   
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or    
L

L
  = 23.6 PPM 

 
This figure represents the temporary elongation of the material due to the applied external 

stress. It is so small, that it cannot be measured by most simple devices and requires special 
techniques and tools to verify such a change of length occurs as a result of the applied stress. 
 In the case of a simple column of dimensions r 1  = r  = 1.5 inches, the unit elongation 
becomes: 

2

 

 
L

L
  = 

11)( rrE

P


 = 

.)5.1.)(5.1)(000,000,30)(1416.3(

_000,10

ininPSI

lbs
 = 0.000,047,2   

or  
L

L
  =  47 PPM 

 
Here, the smaller column has a higher unit elongation because the cross section is uniform and 
smaller. That is, the effective area to carry the load has been reduced over part of the cone as 
shown in Figure 1.3. This is one of the forms of stress concentration that will be covered in future 
chapters. Since the pressure is a measure of the stress, with the definition of pressure as applied 
force per unit area, the stress will be greater in the smallest cross section. 
 

P = Stress 

A A 

 
Figure 1.3 - Stress in a Cone and a Column 

 
Example 1.2 - The combination of a steel shaft surrounded by a bronze bushing carries a load. 
We apply pressure along the long axis. This situation mimics many rods and support structures. 
 
The combination of a steel columnar shaft surrounded by a bronze bushing carries an axial load. 
This situation mimics many instrument rods and simple, small support structures of common 
engineering projects. 
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Steel 
Shaft 

Bronze 
Sleeve or 
Bushing 

 
    Figure 1.4 – A Combination Shaft with a Bronze Bushing around a Steel Shaft 
 
 
The same assumptions of Example 1 will be employed here. 
 
From equation (1.3) we can write the total stress on the combination shaft as: 
    

L

L
  = 

))(( SS

S

EA

P
  = 

))(( bb

b

EA

P
       (1.5) 

 
Since the two materials of steel and bronze are in close contact, they will have the same unit 
elongation, but with different cross-sectional areas. Accordingly they will have different internal 
stresses. The total of the stress in the bronze and the stress in the steel must equal the applied 
stress. 
 
    P S  + P b   = P  
 
Where the subscript “S” applies to the steel and the subscript “b” applies to the bronze portion. 
The stress is shared by the materials in proportion to their Modulus of Elasticity and their cross-
sectional areas. This stress sharing condition can be written as a fraction of the total stress as: 
 

for the steel rod    P S  = P [ 
))(())((

))((

SSbb

SS

EAEA

EA


]   

and for the bronze shaft    P b    = P [
))(())((

))((

SSbb

bb

EAEA

EA


] 

 

If the two cross-sectional areas are simply related, such as by  A  = (b 2

1
)A S    

then: 
     A  = A  + A b  = 1.5A  or A S   = (2/3) A  .tot S S .tot

 
With E  = 30,000,000 lbs./in   for steel and E  = 12,000,000 lbs./in 2    for bronze we have: S

2
b
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 P S  = P [
bS

S

AA

A

1230

30


 ] = P [

SS

S

AA

A

630

30


] =   (

6

5
)P     (1.6) 

 
Thus, the steel carries 5/6 of the total stress even though it is only 2/3 of the total cross-sectional 
area. It is wise to look at the unit elongation of each of the two materials to see if one may be the 
"weak link" in the combination. Why is this important? If one of the materials fails through the 
initiation of cracks or damage, then the whole shaft fails in the application.  
 Remember, the original assumption is that the unit elongation is the same for both 
materials. This is because the two materials are tightly connected and one can not slip relative to 
the other. The following calculations support this model: 
 

  
L

LS
 = 

))(( SS

S

EA

P
  = 

)1030)((
6

5

6xA

P

S

  = (2.78 x 10 )(8

SA

P
) 

 

  
L

Lb
 = 

))(( bb

b

EA

P
  = 

)1012)(5.0(
6

1

6xA

P

S

  = (2.78 x 10 )(8

SA

P
) 

 
 
If the applied tensile stress is 5,000 lbs and the area of the steel is 0.7 in. , the unit elongation for 
the combined assembly would be: 

2

 

  
L

LS
 = (2.78 x 10 )(8

S

S

A

P
) = (2.78 x 10 )(8

7.0

5000
) = 1.984 x 10  4

  
L

LS
 = 0.000,1984 = 198.4 PPM 

 
This would be a safe condition if using the elongation associated with maximum safe repetitive 
stress of 0.001 or 0.1% or less. 
 
Example 1.3 – Two different diameter columns of bronze are welded together as shown in Figure 
1.5. The small weld fillet between the two different diameters will be ignored in all of the 
calculations. What is the unit elongation if one column is 1 inch in diameter and 12 inches long 
and the other is 2 inches in diameter and 8 inches long and the applied axial stress is 7500 lbs. in 
tension? 
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8 inch tall by 2.0 
inch in diameter 

P = 7500 Lbs. 
 
 
12 inch tall by 1.0 in 
diameter 

L1 
 
 
 
 
 
L2 

 
Figure1.5 – A Tapered Shaft with a Load 

 
The same assumptions as in Example 2 apply here. 
 

  E = 12 x 10  PSI for Bronze 6

 

then L = 
E

P
 [

2

2

1

1

A

L

A

L
 ]  =  

000,000,12

7500
 [


8

)(25.0

12
 ] = 0.01114 inch 

 
Is this a safe condition for the column? The following are the elongation calculations. The 

stresses on each column are in proportion to the ratio 
A

L
. These two numbers are: 

 

  
1

1

A

L

)25.0(

12
  = 


48

     and   
2

2

A

L


8

 or the ratio of 6 to 1 

 
Therefore: 
 

 L1  = (
7

6
)(0.01114) = 0.009549 inch   and    

L 2  = (
7

1
) (0.01114) =  0.001591 inch 

 

 Elongation1  = 
12

009549.0
 = 0.000796 = 796 PPM   in the 1.0 inch column 

 

and  Elongation  =  2 8

001591.0
 =  0.000199 = 199 PPM in the 2.0 inch column 

      13 



 The elongation is a measure of the reliability of the situation since it is proportional to the 
stress and has a safe upper repetitive limit tied to a physical failure mechanism.  This is through 
the creation of stress cracks and the eventual crack propagation leading ultimately to structural 
failure. The current model makes no comment on the length of time or the number of stress 
applications required that lead from crack inception to ultimate failure. The nature of how the 
stresses themselves are applied and the shape of the stress pulse applied to the material all have 
an impact. The one inch portion of the column is the weak link. The prior calculation shows it 
approaching the suggested safe upper limit of 0.1 percent as it is 0.0743 percent as an elongation. 
To complete this example, the calculation of a reliability number for this situation would be 
desired. 
 
1.5 - Shear Stress Applications for Reliability 
 

In many applications the limit of reliability is measured by the size of the shear applied to 
the material. Any shear imparts four simple stresses, as shown in Figure 1.6 and can lead to 
failure, again by material fracture. The stresses are shown below. 

 

L 

H 



X 

Shear P 1 

2 

4 
3 

Distortion of 
material 
from Shear 
Stress 

 
Figure 1.6 – Shear Forces of Material 

 
 Think of the material under shear as a loose stack of cards. When the force is applied at 
one edge, the card pile deforms (i.e. slides) as shown in Figure 1.6. This allows the material to 
maintain the same volume while it is rearranged to the new, distorted shape, here a simple 
parallelogram. This is a "slip deformation" and often occurs in crystalline planes of materials. The 
greater the number of planes in the material, the easier it is to produce this elastic/plastic 
deformation without overt brittle fracture. Dislocations in the material may affect the forces 
required for slip, reducing the overall force necessary to create a simple elastic deformation. This 
is the “rug slip” mode. The four forces in action as a result of applied shear are labeled 1 to 4 in 
Figure 1.6. Force 1 is the original cause of the shear stress. The other 3 "forces" are the internal 
reactions of the material and are related to the distortion to a parallelogram from a rectangle. The 
initial length is L and the initial height is H. The third dimension can be labeled T and is not 
shown or considered in Figure 1.6. For purposes of this discussion, the material will be treated as 
uniform in this plane with shear occurring only in the LT plane. The force placed upon the upper 
edge moves the material an angle,  or the total distance, X. This simple model for shear has the 
following properties: (The shear is expressed in the traditional X-Y, LH plane, and so no 
subscripts will be shown to identify this plane). The shear stress may be written as: 
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    = Shear Stress = Force/Area    (1.7) 
 
with the Strain written as: 

   tan = 
H

X
 ~       (1.8) 

 
 and   = G        (1.9) 
 
Where  is the shear angle and G is the shear modulus for elasticity or Modulus of Rigidity in the 
LT plane. 
 The ultimate shear strength for steel is typically about three-quarters of the ultimate 

tensile strength which would make it about  
4

3
(80,000 PSI) =  60,000 PSI for hard cast steel. The 

elastic limit in this situation is typically about 36,000 PSI or 45% of the ultimate strength. For 

general steel, the shear modulus is typically G = 12 x 10  PSI and follows Equation 3.2 for its 
relationship to other fundamental material variables. 

6

 
Example 1.4 - The yield angle of a material represents a critical measurement and is the 
maximum shear angle for the material. It can be treated as analogous to the yield stress or 
elongation. This permits a simple estimate of reliability. For general steels, this angle is often 
about: 
 

   = 
G


 = 

000,000,12

000,27
  = 0.00225 radians = 0.129 degrees (1.10) 

 
for hardened steels we would have 

 = 
G


 = 

000,000,12

000,36
  = 0.00300 radians = 0.172 degrees 

 

If the material were basic aluminum, with G  = 3.9 x 10  PSI and the yield strength were to 

be calculated approximately as follows: 
.Alum

6

 

  S  = (0.6)(0.002)E  = (0.6)(0.002)(3,900,000) = 4,680 PSI .Alum
Y .Alum

 
The estimate is based upon the 60% factor and the upper limit of the elastic range of 0.002. 
Certainly, there is room for variation in both of the estimates. Thus, the yield strength in shear 
could be as low as 4000 PSI and as high as 40,000 PSI. Consult the table for the properties of 
each aluminum. 
 
The maximum yield angle in this shear situation of aluminum would then be: 
 

    = .Alum

G


 = 

000,900,3

000,6
  = 0.001538 radians = 0.879 degrees. 
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Other materials can be calculated in a similar fashion. Remember that this simple 
approach is based upon elastic behavior of the material. If a calculated yield angle is above this 
critical number, consider the fact that the elastic region boundary may be a little uncertain. The 
maximum yield angle really is a minimum estimate of the stress present for elastic behavior. 
Caution is always suggested when estimating at the edge of the elastic region. 
 
The twist angle, , with a shear stress S  on a shaft of radius r with length L and moment of 

inertia M,  may be written as: 
s

 

    = 
p

t

GI

LM
    and  stress S  = s

p

t

I

rM
    (1.10) 

 
 

The External Twist 
imparts an internal 
strain 

 
Figure 1.7 - External Twist on a Column 

 
Example 1.5 - Stress in a Helical Spring 
 
Place a force couple, P, on a helical spring (Figure 1.8) that has a major radius, R, or diameter D, 
with wire radius, r (and with d = 2r), has N effective coils over the length L. A point, A, near the 
middle of the spring will have to transmit the shear force and so will have a moment acting 
through the center line of the wire itself. The coils have an angle  which represents the rise of 
the helical coils from the base. When angle  is small, the main moment which is (PR)[cos( 
may be approximated by PR. The spring is then said to be "closely coiled". In this situation, we 
also neglect the effects of a second moment, (PR)[sin()]which will be very small in a closely 
coupled situation. The primary stress inside the wire from the twist moment generated when the 
spring expands can be written as: 
 

   Stress = 
)(

)(

p

t

I

rM
  = 

)2/)]([

))](([
4r

rPRCos




 ~ 
)(

2
3r

PR


  

 
And 

 = Gr(
dx

d
)    (1.11) 
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Remember that the major radius, R, as measured from the center line of the coil to the center of 
the wire is much larger than the wire diameter, r. There is a shear force within the wire itself 
which is distributed uniformly over the small wire cross section. This can be written as: 
 

   Direct Shear Stress = 
)( 2r

R


   

 

Thus, the stress due to the twist of the coil is 
r

R2
  times larger than the shear stress so the direct 

shear stress. This small error will be neglected in further calculations of the shear inside the 
spring wire. The neglect of the shear stress is valid as long as R>> r. In the real world, both 
stresses are acting, especially at the inner and outer edges of the wire. At the inner edge the two 
stresses are additive and this may lead to a change in the cycles to failure for the spring when 
the wire diameter is not small as compared to the coil diameter. This is why many coil springs fail 
from a crack that is initiated on the inner edge of the coil near one end. 
 The spring will naturally change its length due to the tension placed upon its ends. From 
Equation 1.11 above we can write the relationship for the shear force on the spring and the 
response of the spring. At point A, the spring will turn a small angle d as the tension or 
compressions forces act. The top and bottom coil of the spring turn an amount, Rd while the 
length changes by . Any sideways motion of the coil will be neglected in this calculation. This 
discussion can be summarized with the following two equations describing the twist angle as a 
function of the length change This is: 
 

   d = 
)(

32
4d

PR


[

G

dl
]  

and   =  =  Rd  dl
dG

PR

))((

32
4

2


 =  

))((

)(64
4

3

dG

NPR
 = 

))((

)(8
4

3

dG

NPD
 (1.12) 

 
This is the simple downward length change of the coiled spring wire due to the force 

upon one end of the coil. Likewise, the spring height may lengthen due to the common force upon 
the spring (Hooke's Law). From this knowledge we can estimate the reliability. Hooke's Law may 
be expressed as: 
 
    Force = K (l - l 0 ) 

 

Combined with Equation 1.12 with the fact that we will set = l - l 0  and with K = 

P

 

representing the spring stiffness constant, one has: 
 

    K =
)(8 3

4

DN

Gd
      (1.13) 
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Figure 1.8 – The Helical Spring 
 
Example 1.6 - A helical spring of 12 active coils, made of spring steel is constructed of 0.100 
inch diameter wire with a coil diameter of 1.20 inches. What is the spring stiffness constant? 
What would the force be if this spring was stretched 2 inches? 
 
Assumptions - 
 
 A) The spring follows Hooke's Law. 
 B) The twist is the main source of shear stress. 

 C) The coil radius, 
2

D
,  is much larger than the wire radius, 

2

d
. 

 
Begin with Equation 1.13 to calculate the stiffness constant. 
 

  K =
)(8 3

4

DN

Gd
  = 

])2.1)[(12(8

)100.0)(000,000,12(
3

4

 = 7.234 lbs./inch 

and 
  F = K(l - l 0 ) = (7.234 lbs./inch)(2 inch) = 14.47 lbs. 

 
Example 1.7 - If the spring were only 8 active coils of wire 0.130 diameter and coil diameter 
0.75 inches and made of brass, the force constant would be: 
 

  K = 
)(8 3

4

DN

Gd
  = 

])75.0)[(8(8

)130.0)(000,000,6(
3

4

  = 63.47 lbs./inch 

 
and the force for a 0.5 inch deflection is: 
 
 F = K(l - l ) = (63.47 lbs./inch)(0.5 inch) = 31.74 lbs. 0

 
If a force of 40 lbs was required for a deflection of 0.2 inches, what brass spring constant would 
be required? 
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  40 lbs. = (0.2 inch)(K) 
 or K = 200 lbs./inch 
 
Example 1.8 - What spring design would be consistent with this requirement if the spring were 
steel? 
 

 K = 200 = 
)(8 3

4

DN

Gd
  = 

)(8

)000,500,1(
3

4

DN

d
 = (1,500,000)

)(

)(
3

4

DN

d
  

 
For 12 active coils, one has: 
 

  200 = (125,000) 
)(

)(
3

4

D

d
    

 or  
)(

)(
3

4

D

d
  = 0.0016 

 
For a coil diameter of 1.25 inch, we have: 
 

  d 4  = (0.0016)(1.25)  = 0.003125 3

 
 or  d = 0.2364 inch 
 
This is the steel wire diameter to build the desired spring. 
  
1.6 - Simple Structural Examples 
 

This section will be concerned with traditional beams and structures and how the forces, 
torques and moments may be simply described in order to evaluate the stresses in the beam 
materials. These examples will be employed later in the book to lead to simple estimations of 
reliability in a wide variety of situations. A few examples will be employed to show the concepts 
of beams. The following examples are the building blocks of many reliability approaches. The 
first example is from Den [18]. All of the examples employ the same basic assumptions which 
are: 
 
Assumptions - 
 
 A) Low stress, stress levels remain in the elastic zone of the material. 
 B) Simple linear models in use, no non-linear effects are considered. 
 C) Materials are uniform in all directions. 
 D) Applied loads and stresses are uniform unless otherwise noted. 
 
Example 1.9 - A beam with 2 stresses, P and Q, placed upon it is shown in Figure 1.9. What are 
the stress distribution and moments in the beam? This looks like a motor rotor or many other 
static load situations.  
 
These distributions are shown in Figure 1.9 and described by the equations below. The two 
applied forces are P and Q. The force P is applied at the middle of the beam and Q is applied 1/4 
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of the way from the left edge. The beam is of length L. The beam cross section, width and height, 
are small with respect to the length and any effects will be ignored in this example. At each end 
of the beam there is vertical equilibrium. Using the right end as a reference, the shear force is: 
 
 Shear Force, right side = S  = (1/2)P  + 1/4(Q)     (1.14) r

 

 Moment about a point, x, from the right edge = M  = x(r
b 42

QP
 )  (1.15)  

 

1/4         Q          P                    1/2 

3L/4(P/2+Q/4) L/2(P/2+Q/4) 

-(P/2+3Q/4) 

x 

Q/4 - P/2 

P/2 +Q/4 

Applied 
Forces 

Stress 
Distribution 

Moment 
Distribution 

 
Figure 1.9 – The Stress Distribution in a Beam 

 
 The custom is to use a downward bending or deflection of a beam as a positive sign. Had 
we selected the left edge instead as a reference, the equations would still be the same. Starting at 
the left edge, the stress and moment equations are initially: 
 

 Left Side Stress = S l  = P + Q - (
42

QP
 ) = (

42

QP
 )   

 Moment = M l  = (L - x)(b 4

3

2

QP
 ) – (Q)(

4

3L
 - x) - P(

2

L
   - x) =  x(

42

QP
 )  

 
 The discussion of the forces, moments and stress distributions allow one to extend the 
idea of simple deformation to more complex shapes and objects. This ultimately will permit 
several approaches for estimating the reliability of the beam material.  
 
1.7 - A Single Force on a Beam - What is the deflection distance and angle for a simple beam 

deflected by a force P on the free end as shown in Figure 1.10?  
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Example 1.10 - The equations change a little from Example 1.9. These are shown as Equations 
1.14 and 1.15. This example follows the basic assumptions given above. 
 

P = Force 
 
 


Y 

X 
 




Moment 
Distribution 

 
Figure 1.10 – The Free End of a Beam under and End Load 

 

The maximum beam deflection angle is    = 
EI

PL

2

2

   (1.16) 

 
where I is the Moment of Inertia about the end of the beam. 
 

The maximum beam deflection is      = 
EI

PL

3

3

   (1.17) 

 
Example 1.11 - A Uniform Load. For a cantilever beam, as shown in Figure 1.11 with a uniform 
load, with weight per unit length, W, what is the deflection angle and deflection?  
 
Worked in a similar fashion to Example 1.10 we have: 
 

maximum deflection angle    = 
EI

WL

6

3

    (1.18) 

  

and maximum deflection   = 
EI

WL

8

4

     (1.19) 
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W = 
Force/Length 
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Figure 1.11- A Beam under a Uniform Load 

 
The point, a distance x from the attached end, is L-x from the free end. Therefore, the bending 
moment would be in this situation: 
 

   M = 
2

)( 2xLW 
     (1.20) 

 
Filling in the following basic equation, and integrating gives: 
 

  = 
dx

dy
 = 

L

EI

Mdx
0

 =   dxxL
EI

W 2)(
2

 = 







 1

3
22

32
C

x
LxxL

EI

W   (1.21) 

When x is zero there is no bending moment, so C 1   must be zero. 
 
Integrating the results of Equation 1.21 gives: 
 

 y = dx
x

LxxL
EI

W
 










32

3
22  = 








 2

4322

12322
C

xLxxL

EI

W
 (1.22)  

 
When x is zero there is no bending moment, so C   must be zero. 2

 
Letting x = L in equations 1.21 and 1.22 yields Equations 1.18 and 1.19 as previously shown, 
since x = 0 leaves no remaining terms. 
 
 
1.8 – The First Reliability Model for Mechanical Situations  
 
 A simple reliability model is the stress-load model. In its simplest form it assumes that 
the stresses present are normally distributed and that the strength of material is also normally 
distributed across a number of samples. With these distributions known, we can calculate the 
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overlap of the two distributions, called interference, and can estimate the reliability of the 
situation.  The area of overlap is proportional to unreliability. See references [2], [3], [4] and [6] 
for additional information on this technique. 
 

Distribution 
of Strength 

Overlap or 
Interference 

5000 PSI   8000 PSI

Mean Load          Mean Strength 

Distribution 
of Load 

 
Figure 1.12 – The Stress–Load Model 

 
 
  
  Mean of the Load is  L  =  5000  PSI    and   =  700 PSI L

  Mean of the Strength is S  =  8000  PSI   and   =  800 PSI     S

       
We often desire the Safety Margin to be > 3 to ensure a high reliability. The Safety Margin 
unfortunately is a poorly defined term. You can find at least 2 definitions, depending upon the 
book. Note - Most books agree that The Margin of Safety is different from the Safety Margin. 
The Margin of Safety being the ratio of the average values of the strength and load when the 
standard deviations are unknown.  The following is the most common convention for the Safety 
Margin or S.M.  
 

Z = Safety Margin = 
iancesSumof

MeanLoadthMeanStreng

var


    (1.23) 

 

Here this is  S.M.  = 
1063

3000

)800()700(

50008000
22





  =  +2.822 

 
 and since  R  =   ( S.M.)         (1.24) 
 
 so   R  =   (+2.822)  =  0.997614  as read from the Normal Table 
 
 
 A one time application of a range of stress upon a material will lead to the population 
reliability of 0.997614 for the range of loads and strengths present. Figure 9 shows the 
considerable overlap of the two distributions. Despite this, the one time reliability is still high. 
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This simple model can be employed with a variety of situations. These are mainly mechanical, 
but can also be electronic. Where ever one can describe a probability distribution that is related to 
a state of a system that has a well defined failure distribution, we can use this approach. Time 
may even be added to the whole approach.    
 Extensions of the simple static model may be based upon the fact that one can model 
some quasi-static situations by the interference (overlap) of the strength and load distributions. 
The distributions represent a probability of strength and a probability of load (stress) in a 
population of possibilities. They do not suggest that a single system is changing values of 
strength, rather the whole population may be drifting. Load is assumed to be static or drifting just 
as is strength. Both distributions are still assumed to be normally distributed. The math in this 
case is easy. The overlap area of the two distributions is proportional to the probability of failure. 
This simple model may be extended by adding time or repetitive activities. The following 
examples show ways to extend this simple model. 
 Degradation may be the description of a slowly declining strength distribution. The stress 
changing with time may be associated with a number of common failure mechanisms such as loss 
of lubrication, wear out or damage. 
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2.0 - Dynamic Examples and Applications 
  
2.1 - A Simple Stepper Motor  
 
 Imagine for a minute we have 10% variation on the dynamic load of a stepper motor as might be 
the case with a driven assembly. We will use a stepper motor with the average driving force   F  =  40 

in.-lbs. and   = 2 in.-lbs. and these have a steady load ranging over 
drive

drive

 
   F Load = 32.0 in-lbs. with   = 3.20 in-lbs. Load

 
Load 

Stepper 
Motor 

 
Figure 2.1- A Simple Stepper Motor 

 
We can describe the expected average reliability for a population with these average values of 

driving force and load with the probability Equation (1.23).  
 

Prob. of Reliability = Prob.(Z) = Prob. (Safety Margin) =  {
iancesSumof

LoadMeanStrengthMean

var

__  } 

 

 with  Z = S.M.  = 
77.3

0.8

)2.3()0.2(

3240
22




    

  
 so   Z  = + 2.12  
 
 Reliability = Prob.(+2.12)  = 0.9830    
 
 The Z score represents the probability of Reliability in this situation. We are asking by the 
equation above just how close is the distribution of the driving force is to the load or damping force. This 
closeness is measured in terms of the variances of the distributions. Thus, we have by looking up this 
score in any Normal table.  

This Reliability number represents for a simple population the expected reliability for a one time 
application of the population load distribution on the population driving force distribution. For anything 
more dynamic, some assumptions will need to be made. 
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Example 2.1 - Repetitive Cyclic Stresses 
 
 In this example, the concept of simple low level repetitive stresses is added. This approach will 
provide an approximate answer in the cases where cumulative stress slowly accumulates. This is 
sometimes referred to as wear, degradation, aging or fatigue model. How high should the one time 
population reliability be in order to achieve an average population Reliability of 0.90 at 5000 cycles? This 
assumes slow accumulation of degradation. A simple approximate model is then: 
 

Let  R final  = 0.90 = (R ) 5000        (2.1) Initial

 
  This model also assumes that all events are independent. It could also model a situation when 
there was a very low accumulative degradation or wear would be present in any of the stress incidents or 
cycles. We can easily rearrange the equation to write: 
 

  R Initial  = (0.90) 5000

1

  = 0.9999789       (2.2) 

 
This number represents the required reliability of the initial products in order to achieve the final 
reliability after the 5000 stress cycles. The model is based loosely upon the binomial distribution and has 
limited applicability in most engineering situations. The assumptions required are seldom fully met in the 
real world. This model provides only an approximate solution to this problem. 
 
Example 2.2 - Minimum Driving Force  
 
 If we fix the average load at 32 in.-lb. and the standard deviation of the load at 3.2, in Example 
2.2 we can then solve for the minimum driving motor force required to achieve a reliability of 0.9999789 
as calculated. We assume a 10% tolerance is adequate to describe the variability of the driving force that 
will result in the initial desired reliability of 0.9999789. We have then: 
 

  Z = 
24.10)1.0(

32
2 



F

F
  =  -4.126,        (2.3) 

 
where -4.126 is from the required Z score for the desired initial reliability of 0.9999789. The minus sign 
indicates that we require the overlap or interference to be very small and "on the left side of the strength 
distribution". This is a common sign convention, but not the only one you may experience. The 
mathematics is not too difficult but will be detailed here. 
 

  (F - 32) 2   = (17.024)(0.01F  + 10.24) 2

 

  F 2   - 64F + 1024 = 0.17 F   + 174.3 2

 

  0.83F  -64 F + 849.7 = 0    2

 
and the solution is   F =  60.1 in-lbs  is the required initial driving force 
 
We discard the second solution to this quadratic equation, since it is 17.04 in-lbs. This solution is not 
viable for the problem as stated. 
 

26 



Note - If we hold the driving force variation to only 5% this average force reduces to 48.6 in-lbs. This is a 
very dramatic reduction. It shows the implicit interaction of quality and reliability in this case. 
 
2.2 - A Simple Time Dependent Situation 
 
Example 2.3 - Set the reliability from the Example 2.1 equal to a simple static reliability model. We are 
suggesting the reliability is time dependent but the failure rate not dependent on time. This assumption 
is not true where wear, degradation or accumulated fatigue is present. Let the total expected life be equal 
to 5000 cycles which occur over 250 customer operating hours. These operating hours might actually be 
accumulated at the rate of five operating minutes per each system operating cycle per day. Think of this 
as a computer hard drive access situation or an appliance that is occasionally used (microwave or washing 
machine). It takes a long time to accumulate these 5000 operating cycles or "250 operating hours". Next, 
use the basic reliability equation, because we do not have more information to justify a better reliability 
model. 

    Reliability = e       (2.4) 
t

 

    0.983 = e t  
    
 and    0.01715 = (250) 
 
    = 0.0000686 failures/access hour  

or   = 0.0000034 failures/operating cycle 
 
 This number represents the failure rate that will achieve the desired reliability at the number of 
life cycles. The reliability at 50 cycles would be 0.999829. The initial reliability, or zero cycle reliability, 
as calculated from the formula would of course be 1.00. The reliability at one cycle is 0.9999314. Both 
bracket the required initial reliability of 0.9999789 we had determined in Example 2.1. Thus, this zero 
time approximation is a rough estimate.  
 
Example 2.4 - A More Dynamic Time Dependence 
 
 Now, consider the situation with the following time dependency on the load and driving force. 
This corresponds to the simple aging of the motor combined with the slow decrease of the load. This 
looks like any stepper motor situation you might encounter in the real world. Figure2.2 shows this 
graphically. 
  

 Motor Driving Force = A e0

2)
100

(
t


 where A 0  = 43 in.-lbs. or the initial drive (2.5) 

    

 Load Force = F 0e
)

10000
(

t


  

These two formulas represent a rapid motor force decay combined with a slow decay of the load. 
 
When does the Reliability drop to 0.70?  An approximate solution to this more complex time dependent 
reliability problem is as follows. We have: 
 

 Driving Force = (43)e
2)

100
(

t


  and  F  = 2.15 or 5% variation 
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 Damping Force = (32)e
)

10000
(

t


    and   = 3.2 or 10% variation DF

 
 

 so we can write    -0.525 =  
855.3

3243
)

10000
()

100
( 2 tt

ee



     (2.6) 

 

  -2.024 = (43)e
2)

100
(

t


 - (32)e
)

10000
(

t


    
 
taking the first terms only of an expansion, we have 
 

-2.024 = 43[1 - 
000,10

2t
] - 32[1 - 

000,10

t
] 

 
we have this approximation if we let t be small with respect to 10,000 hrs. This is often the case, so we 
will assume it and then see if it is true. The equation simplifies to: 
 

  -2.024  = 11 -  
000,10

43 2t
  + 

000,10

32t
  

 

   43t 2 -32t -130,239 = 0 
 
 solving  t = 55.4 hrs. 
 
    
Our assumptions appear to be correct as 55.4 is small as compared to 10,000 hours. This represents the 
total accumulated system "operating time" until the reliability drops to 0.70. It was the strong time decay 
of the driving (motor) force that reduced the reliability greatly in this example. This model also assumed 
that no change to the variances occurred. We see in Figure 2.2 that the two distributions approach each 
other as time passes. This accounts for the sole time dependence and the unreliability measure. 

Overlap 
Driving 
force 
 
Load or 
Damping 
Force 

Time
 

Figure 2.2 – Time Dependence of the Reliability 
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2.3 - Calculating the Minimum Zero-Time Force 
 
Example 2.5 - If a reliability of 0.999 is desired at 50 hours in Example 2.4, what should the initial 
driving force be if 5% variability exists with the motor? We begin by filling in the Equation 2.6 above. F 
represents the basic force required at time zero to achieve this reliability. The time dependence is the 
same as in Example 2.5 for driving force and damping forces.  
 

  -3.09 =  
22

)
10000

()
100

(

)2.3()05.0(

32
2






F

eFe
tt

 = 
22

2

)2.3()05.0(

)
000,10

1(32)
000,10

1(





F

tt
F

 

 

  -3.09 = 
22

2

)2.3()05.0(

10000

32

000,10
32





F

tFt
F

     (2.7)  

 
Filling in the time of 50 hours and squaring the equation yields: 
 

 9.548(0.0025F  + 10.24) = (0.75F - 31.84)  = 0.5625F  - 47.76 F + 1013.8 2 2 2

 
 
reducing the equation provides: 
 

  0.5386 F 2  - 47.76F + 916 = 0 
 
 or  F = 60.62 lbs. 
 
Our initial average driving force must be at least this large to meet the desired reliability of 0.999 at 50 
hours with the time dependence of the drive and damping forces as shown.  This example is a prototype 
for a wide variety of similar problems that can be solved by similar techniques.  Examples in addition to 
the stepper motor include fans, belt driven systems, sliding systems and shaft driven systems. This 
technique may also be applied to time dependent (i.e. wear out dominated) electronic components 
involved in special situations. These included bright LEDs, special incandescent bulbs and a variety of 
switches.  Examples 2.4 to 2.6 allow approximate solutions in most cases and can be calculated on a 
single sheet of paper in about 10 minutes. The more detail available and the more complex the models in 
use usually adds to the effort required and the precision of the final answer. At times, this requires a 
computer or other approaches such as Finite Element Analysis.  
 
Example 2.6 - Slower Degradation of the Driving Force  
 
 Now, consider the situation with the following different time dependency driving force. This 
corresponds to the simple slow aging of the motor combined with the slow decrease of the load. This 
changes the situation of Examples 2.4 and 2.5  

 Motor Driving Force = A e0

2)
1000

(
t


 where A 0  = 43 in.-lbs. or the initial drive (2.5) 
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 Load Force = F 0e
)

10000
(

t


  

These two formulas represent a slow motor force decay combined with a slow decay of the load. 
 
When does the Reliability drop to 0.70?  An approximate solution to this more complex time dependent 
reliability problem is as follows. We have: 
 

 Driving Force = (43)e
2)

1000
(

t


  and   = 2.15 or 5% variation F

 Damping Force = (32)e
)

10000
(

t


    and   = 3.2 or 10% variation DF

 
 

 so we can write    -0.525 =  
855.3

3243
)

10000
()

1000
( 2 tt

ee



    

 
 

  -2.024 =  11 – 43[
6

2

10

t
]+ 32[

10000

t
] 

 

  43t 2 +3200t – 13,024,000 = 0 
 
solving yields  t = 588.5 hours 
 
Thus, when the driving force decay was reduced by a factor of 10, the life increased by slightly more than 
10 times. 
 
2.4 - The Importance of Degradation 
 
 Additional methods for describing degradation can be employed. These are intended for a variety 
of different situations. When the standard deviation varies with time, the reliability model begins to look 
more and more realistic. This slightly more complex model can now cover a wider variety of situations 
such as encountered with accelerated life testing or high stress application. The next several examples 
explore these possibilities in detail.  
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3.0 - Dynamic Degradation Mechanical Models 
 
Example 3.1 - Inclusion of Dynamic Degradation into Reliability Models 
 
 Degradation considerations are often missing from most models using the Stress-Load 
approach and even those shown before were only a quasi-time dependence. This strength 
degradation could be a result of corrosion, accumulated fatigue, external damage or internal 
structural changes with-in the material itself. The material could be metal, plastic, wood or even 
ceramic. The model provides a better approach to including degradation. It shows a gradually 
decreasing strength and the common time dependent standard deviation. In this example the 
strength degradation will change over time while the load distribution will remain constant. 
Nelson [5, p.532], Carter [6], McLinn [15] have provided a few simple equations to describe this 
situation. This simple model is not widely known nor employed in many mechanical reliability 
examples.  
 

L 

L Sf        Si 

Initial 
Strength 
Distribution 
 

f 

Degraded 
Strength 
Distribution 

i 

Initial Load 
Distribution 

 
Figure 3.1 - The Stress-Load Degradation Model 

 
 A load distribution is applied to a material of initial mean strength S i  and initial 

standard deviation  i . This distribution will slowly decay over time to the one shown as the final 

distribution, labeled S   and  .  The decay may be the result of the effects of a constant load, 

the effects of internal degradation of the material or as a result of material fatigue or long term 
corrosion. When will the reliability decay to 0.95 if the following mathematical function 
describes the degradation process? 

f f

 
The linear type decay of the strength of the material. 
  

  Mean strength  = S i  - At   with    =    +   t 2
f

2
i

2
b

 

Let 3   =    with a decay rate of A = 2 lbs./in /hr. or PSI/hr. 2
i

2
b

2

 
The mean load is L = 1200 PSI;    = 40; with  S i = 2500 PSI;   i  = 50  L
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And   R = P(Z) = -1.645 = [ )31(22 t

AtLS

iL

i






] =  [ )31)(2500(1600

212002500

t

t




]          (3.1) 
 

  2.706(4100 + 7500 t) = 1,690,000 - 5200 t + 4 t  
2

   

  4 t
2

 - 25495 t + 1,678,905 = 0 
 
and   t = 66.5 hours 
 

Note     =   + 3  t  = (50)  + 3(50) (66.5) = 501,250 2
f

2
i

2
b

2 2

 and  f = 708 

   
With this rate of decay, it takes only 67 use hours to decay from an initial reliability of 1.00 to the 
reliability goal of 0.95. This seems unusually short in terms of operating time. It is because the 
strength distribution increased in standard deviation from the initial 50 PSI to 708 PSI even 
though the mean value has decayed from 2500 to about 2367 PSI.  The model shows how 
important a change of standard deviation was to this problem. 
 
Example 3.2 - Alternative Standard Deviation  
 
 Let the standard deviation function in Example 3.1 become:   
 

    =   +   t     with   =     2
f

2
i

2
b

2
i

2
b

Keeping     L = 1200 PSI;    = 40; with  S i = 2500 PSI;    = 50 L i

 

R = P(Z) = -1.645 = [ )1(22 t

AtLS

iL

i






] =  [ )1)(2500(1600

212002500

t

t




]            (3.2) 
 

  2.706(4100 + 2500 t) = 1,690,000 - 5200t + 4t  
2

 
  4t - 11965t + 1,678,905 = 0 
 
so   t = 147.6 hours 
 
 This example takes into account the combined effects of the gradual decrease of the mean 
strength and the additional spread of the strength distribution. The time to the reliability decrease 
has more than doubled. The example can be made more complex by the addition of time 
dependence in the load or by the use of a spectrum of loads. Monte-Carlo models may also be 
employed to solve problems of this nature.  
 
3.1 – Cyclic Stresses and Fatigue 
 
Example 3.3 - Miner's Rule and Accumulative Fatigue Theory 
 
  We can define something we call Miner's Rule. It relates the accumulation of 
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fatigue due to multiple incidents of stress on a product to the ultimate life of that product. There 
may be a spectrum of stresses present in this situation as is common in the real world. Miner's 
rule allows us to easily summarize this spectrum and look at the impact. The impact is the 
accumulation of fatigue that eventually leads to a failure. The concept of a fatigue limit also 
exists in this model. Only stresses above the fatigue limit contribute to eventual system failure. 
These may be combined by the following formula. This formula was developed as a means of 
estimating accumulative fatigue in dynamic situations. It is sometimes referred to as the Miner-
Palmgrem relationship. The theory behind the relationship is simple. If each application of a 
stress (n) to a component or system does some damage or fatigue is accumulated over time, we 
can write a simple linear equation to describe the accumulative effects. 
 
  Total damage  n cycles of stress  
 
The damage from each individual stress cycle is linearly cumulative in this model. Eventually, the 
stress accumulates and a failure occurs. It takes a minimum of N stress cycles before failure. 
Thus, each individual stress contributes an amount to failure proportional to a cycle. We have: 
 

  individual stress damage = 
N

n
 

 

Summing up all the contributions to damage from multiple levels (k ) of stress yields formula 

3.3. Setting this quantity equal to a total of 1.00 to indicate a failure, we have the traditional form 
of Miner's rule. 

i

  

   Miner's Rule is  


k

i i

i

N

n

1
   =   1.0     (3.3) 

 
 

Where     n i  = Relative number of cycles that occur at a stress and above the fatigue limit. 

Each    
  recurrent stress level is indicated by a different value of "i". 
 

   N i  = Absolute number of cycles to destruction at the stress in question.  
 
  Miner's rule is a very simple formula that relates macroscopic behavior with a 
wide variety of microscopic activities. As stress cycles accumulate, fatigue cracks are first initiated 
by passing a threshold condition. Next, additional stress cycles lead to the growth and propagation 
of these cracks. Eventually, additional stress cycles lead to macroscopically observable effects and 
ultimately system failure. Therefore, it is not surprising that this simple linear macroscopic model 
may not always adequately cover these complex series of microscopic activities. There is one last 
aspect to the simple theory. At some low level of stress, no cracks are initiated. Thus, a "minimum 
threshold" needs to be overcome. This is commonly related to the fatigue limit, for it represents 
the lowest level for which damage can be started and accumulated.     
 
Example 3.4 - Miner's Rule, a Simple Application 
 

  Given a Fatigue Limit  =  4.5  X  10  PSI, a system was observed for a period of 
8
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time and the incidents of stress were combined into only three high stress levels above the fatigue 
limit. This data was recorded and a time snap shot is shown graphically in Figure 3.2. A large 
number of very low level stresses also were found to exist. These are all below the fatigue limit 
and do not contribute to any system fatigue. The high stress data is summarized in Table 3.1. Each 
week contains on the average the same number of high stress points, so any one week is typical of 
the product. 
 

Time Intervals 

High 
 
Moderate 
 

   Low 
 

Fatigue 
Limit 

Time 
 

Figure 3.2 – The Summary of Stresses Observed over Three Time Periods 
 

Table 3.1 - Summary of High Stresses Observed 

  Strength  Cycles, N i                         Number of stresses observed 

        PSI        to Fatigue each week, n  i

 

 Low Stress    5.5 X 10  10,000,000 cycles 3010 stress cycles 
8

 Moderate Stress 6.5     “ 3,000,000     “ 1360    " 
 High Stress 7.0      “ 500,000        “ 477      " 

 
With Miner's Rule we can write: 
 

1 =  
000,500

477

000,000,3

1360

000,000,10

3010 AAA
  

 
10,000,000 = 3010A + 4528.8A + 9540A = 17,078.8A 
 
so      A = 585.5 

 
 
  Solving for A, yielded 585.5 weeks to failure for the "typical" system. The "A" 
in this equation stands for a typical week over which the comparative observations occurred. The 
only requirement on the time period is that each is long enough to be "typical". That is, contain 
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the same information on the average as every other time period on the average.  
  This solution assumes all systems respond the same when exposed to this 
spectrum of stresses. That is, there is a very narrow range of system strength. No variation of 
system strength was considered in this example. This may or may not be accurate with real 
systems as they normally show 5% to 10% variation in strength. Likewise, it is assumed that 
every source of stress is the same. This may not be true as the sources of stress may vary by serial 
number, customer use or customer environment. 
 
Example 3.5 - The S-N Curve 
 
  The meaning of the S-N curve can be described fairly simply. Most materials 
have a limit (fatigue) below which any stresses have very little impact. The life of the system is 
essentially infinite because no cracks or other sources of system damage can be initiated and 
propagated. Above the fatigue limit the life is limited and strongly stress dependent. A plot of the 
log of stress versus the log of life often produces the two straight lines. One line for each of the 
two different relationships that are present. The fatigue limit is located at the knee of the two 
lines. Many materials can be simply described in this fashion. However, some caution is required 
when employing this relationship. It is well known that for some high levels of stress this 
relationship breaks down. That is, an upper limit may exist for some materials. For other 
materials or applications of stresses, this may be a poor description of the initiation of damage to 
propagation of damage to ultimate failure. Simply said, there are situations where Miner's rule 
does not work. It is not surprising that tension, shear, compression could be found for certain 
stresses or materials where a more complex formula would be required. It is probably best to treat 

Miner's rule as a first approximation for iron, steel, bronze and aluminum over the range of 10
3
 

to 10
7

stress cycles of life [14]. Outside of this cycle range, the model should be employed very 
cautiously. Rao [3] and Carter [6] indicate application limits do exist, but neither is able to be 
more specific and suggest limits. Mischke [14, p.13.8] cites different S-N curves for the same 
material when stresses are applied by different methods. Slightly different curves exist for narrow 
band stresses versus sinusoidal applied stresses or even by constant stress loads. When repetitive 
cycles of stress are applied to a material, fatigue usually occurs at a much lower stress level than 
the ultimate strength. This is due to the accumulation of damage. It may be described by crack 
theory. 
 Typically, a power law relationship is employed to describe the S-N, stress-cycle life 
relationship. A simple stress-strain relationship for the uniaxial and multiaxial situations can be 
described as: 
 

 = n

D
)(


models the uniaxial case   and   = ij )()(

2

3 1

D

S

D
ijn

models the multiaxial case   (3.4) 

 
Where  is stress, D is related to the Young's Modulus and  is the strain. Employing a simple 
elastic-plastic model to describe stress-strain situation we would have the Ramberg-Osgood 
relationship. 
 

   =   +   = e p )(
E


 + n

D
)(


           (3.5) 

 
This macroscopic model is based upon a power-law relationship and can be directly related to an 
S-N curve. Cruse [9] shows that the microscopic crack propagation also follows a power low type 
relationship for a variety of geometries. A simple linear plane of width 2h under tension  with 
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an initial crack of length 2a, has a stress intensity factor at the tip of the crack which is K. This 
factor is related to the tension in the plane and crack length through: 
 

  K = ()[



1

)(a
][1-0.5 +0.37   - 0.044  ]     (3.6) 

2 3

 

Here,  = 
h

a
   and ranges from 0 to 1.0 

 
Figure 3.3 shows this geometry in detail. It assumes the X-Y plane is uniform. 
 



2h 
 
     2a 
 



High 
Stress 
Areas

 
Figure 3.3 – Crack Propagation in a Large Plane 

 
Let the value of  be 0.01. With  = 5000 PSI,   = 12,000 PSI for Aluminum shear and a = 

0.01 inch, we can fill in equation 3.6. 
ys

 

   K = 5000[
01.01

)01.0(




][1-0.5(0.01) +0.37 (0.01)  - 0.044 (0.01) ] 

2 3

 
   K = 5000[0.178138][0.995037] = 886.27 PSI 
 
This is the localized effective stress that drives the crack growth at the tips of the crack. Next, the 
stress will determine if the material at the tips of the crack are in the elastic or plastic region. 
Treating the zone around the crack tip as a small circular region we have the radius of the plastic 
zone estimated as: 
 

   r y  = 2)(
2

1

ys

K


 = (0.15915)(0.07746) = 0.00095  (3.7) 

2

 
This is, the plastic region extends out about 0.00095 inch from the tip of the crack in a circle. It is 
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this high stress region that will continue to growth under repeated stresses, because it is no longer 
elastic. When  is 0.001, the region is still 0.00087 inch in size for a crack of initial size 0.01 
inch. We conclude small cracks grow slowly and the rate of growth increases as the crack size 
increases. 
  The crack growth formulas rapidly get complex when non-uniform 
characteristics exists or when primary and secondary creep are added to the situation. In all cases, 
the stress relationship can be written as a power law. This means the macroscopic S-N curve 
should provide a reasonable approximation when kept with in reasonable limits. Even materials 
such as solder should follow a simple power law relationship when stressed by thermal cycles or 
mechanical cycles. Some common electronic package applications also exist for the use of S-N 
curves. Figure 3.4 provides a simple model for the S-N curve over the range of reasonable interest 
for most materials and situations. 
 
 

Log Stress 
Level 

1000    Log Cycles to Failure   10, 000, 000 
 

S-N Curve 
 

Short Life Portion 
 
      Long Life Portion 

 
Figure 3.4 – The S-N Curve 

 
3.2 - Reduction of Random Stresses  
 
 Multiple levels of stress exist on a piece of metal as shown in Figure 3.5. Observations 
over time allow us to lump the apparently erratic stresses into seven different levels of stress. 
These levels are summarized in a Table 3.2. The situation can best be described by stresses that 
may be applied in random order and time. We will use Miner's Rule to describe and summarize 
this situation.   

Fatigue 
Limit 

Metal Part 

Irregular 
Loads 
 

 
Figure 3.5 – Summary of Irregular Loads on a Metal Part 
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 The many different loads applied to the metal part may be reduced to an equivalent total 
that cover all of the stresses. The stresses may be positive as well as negative in sign representing 
both tension and compression.  Figure 3.5 and Figure 3.6 shows this in detail. All stresses applied 
can be lumped into one of the seven stress categories as shown in Figure 3.6 and Table 3.2. The 
number of each stress that were observed during a given time period are shown in the table. This 
allows one to calculate the equivalent damage and then determine the accumulated overall 
damage to the metal part.  
 

Level of 
Stress 

7 
6 
5 
4 
3 
2 
1 
 
Time 

 
Figure 3.6 – Simple Time Listing of Stresses 

 
 

Table 3.2 - Summary of Irregular Loads Data 
 
 Stress  Occurrence Cycles to  Ratio 

 Level     Observed (n ) Failure Data (N ) n i /N  i i i

 11.7 KSI  335 cycles 4.6 x 10       7.283  x 10  
7 6

 12.5   “  284   “  3.0 x  "       9.467  x   " 
 13.3   “  217   “  1.8 x  "       12.056 x   " 
 14.1   “  167   “  1.1 x  "       15.182 x   " 

 14.9   “  110   “  7.2 x  10       15.278 x   " 
6

 15.7   “  75     “  4.8 x  "       15.625 x  " 
 16.5   “  52     “  4.2 x  "       12.381 x  " 
   -----     --------- 

   1240 total cycles observed  87.272 x 10  
6

 
Accumulated contributions to system failure may be expressed as: 
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  C = 


k

i i

i

N

n

1
 =  87.272 x 10     

6

 
 
The equivalent number (single stress) of cycles to fatigue can be expressed as: 
 

 N .equil  =  


k

i i

i

N

n

C 1

1
  = 

610272.87

1240
x

cycles
  = 14.21 x 10

6
 cycles    (3.8) 

 
The data can be described by the following equation for the cycles to fatigue versus the stress. 
Note this is the upper, short life curve of the S-N diagram. The actual formula for this portion 
of the S-N Curve is: 

  N  = [2.466 x 10
10

]e        (3.9) i
S539.0

 

so we can write     N   = 14.21 x 10
6
 = [2.466 x 10

10
]e  .equil

.539.0 Seq

 

   5.762 x 10  = e  
4 .539.0 Seq

 
   -7.459 = -0.539Seq. 
 
   Seq. = 13.839 KSI   = 13,839 PSI 
 
This is a moderate level of stress for most metals since KSI = 1000 PSI 
 
 This number represents the single equivalent stress that would describe the seven various 
levels of stress actually present in the frequency cited. We did not calculate an equivalent unit of 
time to describe the average system life. All we know is the number of equivalent cycles to 
failure. This calculation provides an observed value of A = 11,458.4 "units of time" (i.e. 
1,000,000/ 87.272) over which the expected N  or 14,210,000 cycles of 13.839 KSI stress 

would have occurred.  
.equil

   
3.3 - Confidence Limits for S-N     
  
 Real world uncertainty may be added to the S-N calculation through estimating 
confidence. Assume the material strength is normally distributed and has a + 10% variation to 
cover the range of 6. We then can simply write using equation 3.9. 
 
Example 3.6 – Confidence Limits Calculation 
 
For a Lower confidence limit 

  N iLC  = (0.9) [2.466 x 10 ]e    as the lower limit on cycles to failure 
10 S539.0

 
And an Upper confidence limit   
 

   N iUC  = (1.1)[2.466 x 10 ]e    as the upper limit on cycles to 
10 S539.0
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failure  
We are assuming the shape of the variation is constant over the stress range in question as shown 
in the modified S-N curve below. This does not have to be true. Calculating the upper and lower 
limits on cycle life at the nominal stress of 13.839 KSI from example 3.6 provides: 
 

N  = (2.219 x 10
10

)(5.758 x 10 ) = 12.777 x 10  cycles to fail at lower limit ( -3) iLC

4 6

 

 N iUC  = (2.713 x 10
10

)(5.758 x10 ) = 15.621 x 10  cycles to fail at upper limit ( +3) 
4

 
 

Log Stress 
Level 

1000    Log Cycles to Failure   10, 000, 000 
 

Upper Confidence Limit 
 
      Lower Confidence Limit 

Fatigue 
Limit 

 
Figure 3.7 – Confidence Limits on the S-N Curve 

 
 The confidence limits as plotted on the S-N graph shows that these limits parallel the 
basic S-N curve itself. There are many different ways to calculate confidence limits and these will 
be explored in detail in a later section. 
 
3.4 - Interference When Distributions are Non-Normal 
  
 The following  examples present a more realistic picture of many materials and stresses 
that may be described by various distributions. Distributions that are possible include extreme 
value, Weibull, Normal or Lognormal covering either load or strength. The following example 
shows the approach for the Normal and Weibull distributions. This example is common for 
rotating situations and full reversing loads such as reciprocal pumps or with thermal cycles. 
 
Example 3.7 - Interference of a Normal and Weibull Distribution 
  
A round aluminum bar is turned repeatedly to full stress levels of +25.0 KSI with a standard 
deviation of 2.50 KSI. This represents the maximum stress at the ends of the circular travel of an 
Aluminum bar. Figure 3.8 shows this situation in detail. The stresses are within the bar and 
maximum at the ends. 
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Figure 3.8 – Cyclic Stress in an Aluminum Bar 
 
 A design life of at least 500,000 cycles is desired for an Aluminum Alloy, Al 7079 -
T652, as forged and surface polished to a "16 finish".  We look up the properties of this 
aluminum alloy in any good handbook. Here the RAC Mechanical Applications Handbook [7], in 
Table 3.6-3 or the TR-68-403 Handbook [20] can be employed. These handbooks detail the 
properties of a variety of materials and document a number of interference distributions. The 
calculations that follow represent the minimum material strength needed for surviving to 500,000 
cycles. The initial strength of material is above 60 KSI. When looking at these tables be wary, 
the X  parameter is not defined as is normally done with a three parameter Weibull in reliability. 

This example does not follow the unconventional labeling found in the two 1968 handbooks. 
Here, I follow the conventional labeling of most reliability books the standard Weibull labeling 
convention. This is sometimes inconsistent with standard mechanical engineering notation and 
usage. 

0

 

Table 3.3 - Characteristics of the Round Bar 
 Load Distribution Parameters  Strength Distribution Parameters 
  = 25.0 KSI     = 3.13    
  = 2.5 KSI  ( or 10% of mean)   = 31.32 KSI   
 Upper limit = 32.5 KSI    = 22.11 KSI 
 Lower limit = 17.5 KSI 
 

Strength 
Distribution Load 

Distribution 

17.5       
 

Figure 3.9 – Interference of the Normal and Weibull Distribution 

32.5   KSI
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The Load is modeled by starting with the lowest point of the Weibull distribution and expressing 
this in terms of location within the Normal distribution Z score gives: 
 

 Z Stress   = 
5.2

 
= 

5.2

0.2511.22 
 =  -1.16 = A 

 
Weibull Strength is modeled by starting with the highest point of the Weibull distribution and 
expressing this in terms of location within the Normal distribution Z score gives: 
 

 Z Strength  = - 
5.2

 
  = - 

5.2

32.3111.22 
 = 3.68 = C 

 
We use these two numbers to look up the interference in the RAC Table 3.6-4. This table has 
entries for integer values of  for 3.0 and 4.0. We interpolate between these two entries for the 
value of  = 3.13, staying in the correct columns for a cycle life of 500,000 cycles. The tables 
showing the interference are proportional to the probability of failure. 
 
 Interference =  0.0897  
 
This number was interpolated from the two tables based on the values of A( note this is negative) 
and the value of C 
 
 Reliability = 1 - Interference =  0.9103   
 
Describes the interference of the Normal Load with Weibull Strength situation. 
 
Example 3.8 - Approximation by Equivalent Distributions  
 
 Had we done the Example 3.7 calculations with a Normal distribution for strength 
(instead of Weibull) we could have used the regular interference of two Normal distributions 
formula. In this case we would use the median value of the Weibull distribution as the mean of 
the equivalent Normal distribution. Set the approximate "Weibull range", here 0.3% to 99.7%, 
divided by 6 to represent the approximate standard deviation for 6. The basic calculations 
become: 
 

   =  (ln2).equil

1

  =  31.32(ln2) 
1

   = 31.32(0.8895) = 27.859 

   = .equil 6

1
(38.09 – 23.53) = 2.427  

 
We replace the value of , the characteristic life,  with the equivalent "normal median" and 
employing a new distribution that covers the same range as the original Weibull distribution. We 
can then write as before: 
 

 Z   = score 484.3

859.2

)5.2()427.2(

0.25859.27
22





=  0.8206   
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 and  Reliability = 0.7940  with this Normal model 
 

New, Equivalent 
Strength Distribution Load 

Distribution 

17.5    20.538.1   
 

Figure 3.10 – An Equivalent Normal Distribution for Strength 
 
 The reason this value is very low as compared to the Example 3.7 is that the strength 
distribution has been artificially shifted downward by the use of the "equivalent normal model" 
as shown in Figure 3.10. Since the original Weibull model was skewed, the equivalent normal 
distribution model really is a poor fit to the original Weibull distribution.  The estimate of the 
equivalent standard deviation could also be improved in this case. Why show this example at all? 
It is because the use of equivalent normal ranges is common when the true distribution is 
unknown or complex. Most of the time, the error in reliability is smaller than as shown in 
Example 3.8. This approximation is also useful when the special tables are not handy. Be cautious 
about approximating distributions in many situations. 
  
Example 3.9 - An Improved Approximation  
 
An alternative approach might be to use the mean of the equivalent Weibull distribution which is 
to be found by calculation. The following formula is the easiest way to obtain the value of the 
mean from the Weibull parameters.  
 
  Mean = (1 +1/) 
 
  Mean = (31.32)(1.3194)  = (31.32)(0.8947) = 28.06 
 
  Lower Limit at 1% failures = 24.23 
  Upper Limit at 99% failures = 37.11 
 
The lower and upper limits were estimated from the original Weibull distribution parameters. 
 

    = .equil 6

1
(37.11 – 24.25) = 2.14  

This better estimate for exists from ignoring the extended tails of the Weibull distribution. The 
Normal, doesn’t have the spreading tails. This approach is also common as it represents an 
attempt to improve the result without using an improved model. Some do this once in a while. 
This example shows how it is possible to improve approximations by being careful. Filling in the 
same equations above provides the following new numbers. 
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  Z score   = 
29.3

06.3

)5.2()14.2(

0.2506.28
22





   =  0.9301   

 
 and    Reliability = 0.8240 in this improved approximation. 
 

Improved Strength 
Distribution Load 

Distribution 

17.5    21.737.1   
 

Figure 3.11 – An Improved Normal Distribution for Strength 
 
 
A short summary of these three reliability examples provides the following table of information. 
This example shows the range of possible answers when approximating solutions. Most of the 
time the approximations are closer to the exact answer than in these two approximation cases. It 
demonstrates why one should work with exact solutions whenever possible. 
 
 
 
Exact Answer Simple Normal Approximation Improved Normal Approach 
 
   R = 0.9103  R = 0.7940    R = 0.8240 
   - 12.8% error    - 9.5% error  
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4.0 - Mechanical Reliability Predictions 
 
4.1 Background of Predictions - Mechanical reliability predictions are being increasingly performed on 
a wide variety of systems, assemblies and components. These predictions are unlike electronic predictions 
for several main reasons. These include: 
 
  1) Most mechanical components, assemblies and systems are wear dependent over most of their 
life. This eliminates some of the common models such as exponential reliability. When wear dominates 
an assembly, it becomes critical to control the rate of wear to a low level in order to permit a long life. If 
wear occurs at higher rates, a short life or frequent maintenance may be the result. 
  
 2) Mechanical functions may be standard, but not mechanical components. A cam may be 
consist of three or four components and this becomes a standard building block. It may not matter much 
that the cam is one cast piece of homogeneous metal or two shaped pieces of dissimilar metal such as an 
actuator, a load bearing surface and a bushing. Both may serve the same function, but the multi-piece cam 
is expected to cost more, but have a longer life. It is difficult to analyze the exact function of a cam 
without all of the mating components in place to understand the stresses present and watch the function. 
 
 3) Mechanical components are often operated at very different stress levels than electronic 
components. Sometimes this is at higher relative stress and other times it is lower. Electronic components 
are typically operated from 20% of their stress rating to 80% of their rated stress. Mechanical components 
may be operated in the range of 5 50 10% stress to preserve long life. Other applications demand 
operating stresses be near 100% 
 

4) Further differences exist between standard electronic components and mechanical components. 
Standard mechanical reliability models assume that the failure rate and hazard rate are not constant over 
any point of the life of a mechanical component. That is, they generally decrease or increase with time as 
shown in Figure 4.1. There may be a short "wear-in" period often with decreasing hazard rate while a new 
mechanical component or assembly “takes a set”, “works out the bugs” or “burnishes the wear surfaces”. 
A number of euphemisms are employed to describe this period. It is sometimes difficult to make the 
proper reliability estimate for this wear-in section. Later a much longer wear period usually exists and this 
dominates the life. Since the wear-in period is usually short, some people use models that act as if it were 
not present. Others develop models to treat this complex wear-in and wear behavior as if it were constant 
over some period of time. An average value is then employed with such simple models. References [1 to 
5] provide some additional information on a variety of mechanical failure rate models.  

 
 Using a constant or non-constant failure rate model we could estimate the failure rate of a simple 
"component", assembly or system based upon an understanding of its functions, internal stresses and 
loads. The following three examples show the main of the three approaches commonly in use for 
mechanical prediction applications. A fourth approach, Finite Element Analysis, will not be considered in 
this book, as a detailed discussion is beyond the scope. 
 
Example 4.1 – A Motor Reliability Model 
  
  Consider the failure rate of a population of electric motors. The old Military Handbook 217 
revision F (Hereafter Mil-Hdbk 217) provided the following simple failure rate model for a variety of 
generic electric motors. There was no distinction between types of motors (DC, synchronous or stepper) 
in any of these models. This handbook provides a formula for estimating the average failure rate over 
some period of time. Note that one term increases with time and the other appear to decrease with time. 
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Average Failure Rate = [  
WB

t


1

3

2

  ]   x 10 failures/ 10  operating hours  (4.1) 6 6

 
The AFR is expressed in failures per hour over the operating period “t”.     
  

This model is based upon the operating temperature, which is hidden in the terms  and 

W This temperature dependence ultimately determines the characteristic life for the bearing term 

( and winding term W , respectively. If the motor is to operate for 15,000 hours at 60ºC internal 

temperature on the average, then the estimate of the time average failure rate can be calculated. The 
numbers are from the Mil-Hdbk 217F ( 1992) and are: 

B

B

 
  

  = 
534

2

108.1

1

)105.3(

)000,15(

xx
   = 

13

8

10288.4

1025.2

x

x
 + 5.56 x 10  6

 

or    = 5.247 x 10  + 5.56 x 10   = 1.081 x 10   failures per operating hour   6 6 5

 
This number is equal to = 10, 807 FITs  or failures per billion operating hours 
 

RIAC document 217 Plus [22] has no entry for motors and Telcordia [23] lists motors as 500 FITs. The 
Carderock Mechanical Prediction Handbook [12] does not list motors. The RAC Non-Operating data 
book [24] lists storage failure rates running from 45 FITs to 2379 FITs for different types of motors. 
 
A diagram of this two part failure rate model from Mil-HDBK 217 is shown in Figure 4.1. The average 
equivalent failure rate is drawn in to show how it doesn’t match the active model. 
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Figure 4.1 – The Mechanical Bathtub Curve 
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Example 4.2 -Consideration of Wear   
 
 A wear process is often created by having one material slide over another. Even if lubrication is 
present, a slow wear of both surfaces may occur. This rate of material wear usually remains low for a long 
time, but then begins to increase near the end of life. The term wear-out may be used at this point of life. 
Be careful not to confuse wear and wear-out. Wear is the process and wear-out is the end result of a 
failure.  

A prior life test of some samples had established the rate of wear may be best described by the  
Weibull function through the shape parameter The wear-in period might be described with a  = 0.75, 
while the slow wear period may be described by a value of  ranging from 1.25 to 1.50. The rapid wear 
phase may be described by values  above 2.0. The cross-over point for the various curves may become 
important. Say, that the prior test suggested that this cross over was around 50 operating hours with about  
2% total failures in a large sample by this point. The bottom of the failure rate curve can be set at this 
time and two different Weibull curves smoothly spliced. Each of the two failures rates from the two 
different Weibull distributions must be equal at this point in time. The slopes are expected to be different 
at this point and may not be related. 

2% 
Failures 

Failure 
Rate 

50              Time 
 

Figure 4.2 – The Spliced Early Portion of the Bathtub Curve 

 
With this information we can write: 
 

  R 50   = 0.98 = e



)

50
(

    

 
This formula describes the first portion of the bathtub curve. Since there is only one unknown, we can 
solve for it. This becomes: 
 

 1   = 8969.7  hours  
 

Describes the decreasing failure rate distribution situation of the early distribution. Using the fact that we 
have equality at 50 hours we can write: 
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Equating the hazard rates at 50 hours for the two distributions provides   = 1693.3 hours. With this 
information we can construct Table 4.1 for hazard rate values as a function of operating time. 

2

 
 

Table  4.1 - Data for Bathtub Curve 
 

   Time Hazard rate  Time  Hazard Rate  

   1 hour 814 x 10   500 hours 544.3 x10  6 6

   5  " 544.4  "   1000  "  647.3    " 
   25  " 364  "   2000  "  769.7    " 
   50  " 306.1    "  5000  "  967.9   " 
   100  " 363.9    "   10,000  " 1151.1 " 
   250  " 457.7    "  20,000  " 1368.8   " 

 
The time period to 2,000 hours corresponds to a total of 71.61% failure. This data is plotted as the bathtub 

curve in Figure 4.3. This data set could also have been converted the average hazard rate of 358.1 x 10  
failures per operating hour over the first 2,000 hours. Other average values would be calculated for 
different time frames.  For purposes of many reliability predictions a real dynamic hazard rate curve is 
often preferred to static data when the real curve can be calculated. Otherwise, static models such as 
portrayed by the average data are seldom a good fit to real time dependent systems. Dynamic curves are 
really needed to estimate the time-dependent hazard rates of real components, assemblies and systems. 

6
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Figure 4.3 – A Dynamic Hazard Rate Curve  

 
4.2 - The Carderock Models of  Mechanical Reliability 
 
 The Carderock Mechanical Reliability Manual [12] has created a number of failure rate models 
for mechanical components and applications. Many look similar to the electronic components found in 
either Mil-Hdbk 217 or the Telcordia Handbook. A review of some of these models will prove 
enlightening. Most are based upon that idea that the failure rate of any component can be modeled 
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through a base failure rate that is modified by a series of multiplicative factors. The following examples 
are typical ones for many mechanical components. The “C factors” in the mechanical handbook are 
analogous to the "" factors in Mil-Hdbk 217 and Telcordia. A few simple examples show that the 
correction factors must be looked at carefully in order to select the best choices. Not every choice may 
exist to correspond to all possible situations. 
   
Example 4.3 - A Coil Spring   
 
 Pretend that you are designing a spring for a certain application. The following characteristics 
arose as part of your design. The spring should be made from a spring temper steel alloy with a wire 
diameter of 0.050 inch, a coil diameter 1.0 inch and have 12 active coils present. The desired 
compression, or cycle travel will most often be about 0.25 inches and this will occur on the average of 
about 10 times an hour, 24 hours per day and seven days a week. These cycles are of short duration in 
time, so it is the cycle count that is important. The basic Carderock numerical model for this type of coil 
spring is: 
 

  =  C G  C  C  C  C Y  C  C  C      (4.3) sp
base
sp DW DC M L K CS

where the terms are defined by 

   is a base failure rate of 0.65 failures per million operating cycles. base
sp

C   corrects for spring material rigidity. G

C     is a correction for the wire diameter. DW

C      is a correction factor for the spring coil diameter. DC

C     is a correction factor for the number of active coils. M

C Y   is a correction factor for material tensile strength 

C    is a correction factor for spring deflection (compression or expansion) L

C    is a correction for stress concentration in the spring based upon the Wahl factor K

C CS   is a correction for the spring cycle rate 

 
Each of the correction factors has either a formula that relates the operating environment, or detailed 
stress, or consists of a look up table to obtain the correction number that best fits the end use environment 
of the coil spring. Once these have been calculated or determined the whole formula may be filled. Thus 
we would have: 
   

   =  C G  C  C  C  C Y  C  C  C    sp
base
sp DW DC M L K CS

 
   = (0.65/1,000,000)(1.0)(0.27)(0.038)(1.59)(0.47)(0.0128)(0.677)(1.0)  sp

 
   = 0.0432 x 10  failures per operating cycle  sp

9

 
  = 10.368 x 10  failures per day  = 3.79 x 10  failures per year  sp

9 6

 
Where individual formulas for corrections are: 
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C  = G
3)

5.11
( mG

and ranges from 0.5 to 1.0 with G  as the material rigidity expressed in 1,000,00 PSI m

C  = DW
3)

085.0
( wD

 and ranges from 0.2 to 5.0 with D  as the wire diameter expressed in inches w

C   =  DC
6)

58.0
(

CD
and ranges from 0.07 to 20.7 with D C  as the coil diameter expressed in inches 

 

C  = M
3)

14
(

aN
and ranges from 0.26 to 12.7 with  N  as the number of active coils; which is commonly a

   the total number of coils minus two. 

C Y  = 3)
190

(
ST

and ranges from 0.47 to 9.40 with T  as the tensile strength expressed in KSI s

C  = L
3)

07.1
( LD

and ranges from 0.03 to 7.03 with D  as the spring compression in inches L

C  = K
3)

219.1
( wK

and ranges from 0.552 to 4.415 where K  is the Wahl factor. K  = w w rr

r 615.0

44

14





 

    and the factor r = Spring Diameter/Wire Diameter 
C CS   is selected based upon the rate of cyclic operation. C =1 when the spring cycle rate is less than 

300 cycles per minute. From 301 to 360 cycles per minute C CS  = 6.0, Above 360 cycles a minutes C CS  = 

12.0 

CS

 
There is no correction for corrosion or surface plating added to the spring wire. What is the projected 
failure rate of a spring with the following characteristics? 
 
Example 4.4 - Hard drawn steel as spring material, 10 coils total in a helical winding, wire diameter of 
0.150 and coil diameter of 0.500, material tensile strength is for spring temper steel, typical compression 
is 0.5 inch with a rate of cycling at 1 time per minute. 
 

 G  = 11.5 x 10  for material rigidity factor, C  = 1.00 m
6

G

C  = DW
3)

085.0
( wD

   =  3)
085.0

150.0
(   = 5.496 

C   =  DC
6)

58.0
(

CD
  = 6)

50.0

58.0
(  = 2.436 

C  = M
3)

14
(

aN
 =  3)

8

14
(  =   5.359 

C Y  =  3)
190

(
ST

 =  3)
245

190
(  = 0.4664 

C  = L
3)

07.1
( LD

  =  3)
07.1

50.0
(  = 0.1020 

C  =  K
3)

219.1
( wK

 with   K  = w rr

r 615.0

44

14





    
 with r = 0.500/0.150 = 3.333  thus K  = 1.303, so w
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C  = K
3)

219.1
( wK

 = 3)
219.1

303.1
( = 1.2213 

 
C CS   = 1.0 since this is a slow cycle rate of 1 cycle per minute.  

 

  =  C G  C  C  C  C Y  C  C  C    sp
base
sp DW DC M L K CS

 

  =  (0.65 x 10 )(1.0)(5.496)(2.436)(5.359)(0.4664)(0.102)(1.2213)(1.0) = (0.65 x 10 )(4.1686) sp
6 6

 

  = 2.7096 x 10  failures/operating cycle  sp
6

 
Thus, at  1440 operating cycles per day, the failure rate becomes 0.0039 failures per day or 0.2029 
failures per year. 
 
Example 4.5 – A Roller Bearing 
 
 It is time to look at a roller bearing as an example. Waloddi Weibull described the life of these in 
the 1930s using the distribution which was named after him. Load and fatigue usually limit the operating 
life of the ball bearings and other types such as roller bearings. These have similar stress-life 
relationships, but the focus will be on the ball bearings. Lubrication, proper alignment, freedom from 
corrosion and contaminants, lack of shock or extremes of temperature all help ensure the long life of 
bearings.  A study of roller bearing failures discovered that the causes broke into three categories. These 
were supplier related (30.1%) which included workmanship, material and construction. User problems 
were 65.9% which included high wear, improper maintenance, defective mounting, high vibration levels 
and electrical currents in the bearing. The remaining failures causes were 4.0% and included items such as 
failure to adequately lubricate and contaminated lubricants.[25] 
 A simple time dependent model for the average (mean) bearing life of roller bearings is: 
 

    m
2

1

)(

)(





t

         (4.4)  

where  1  = 1.88,   = 2.88, h is the Weibull characteristic life which is dependent upon load, lubricant 
type and operating temperature. Lastly t is the operating time. This model shows a strong increasing 
failure rate as a function of time. It should look similar to Figure 4.3, except any early wear-in or early 
life portion would be very short and is neglected by this formula. 

2

 
Example 4.6 – Ball Bearings – Bearing Life can be described by another formula that ignores time 
dependence, but covers the stress-life relationship. This is shown in equation 4.5 and can be found in 
most vendor bearing books and many reliability texts. The formula covers both ball bearing and roller 
bearings. 
 

   =  BE
base
BE











P

C
         (4.5) 

 
   is the constant failure rate expressed in failures/million revolutions  BE

    is a base failure rate derived from a B 10  life base
BE
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  C is the dynamic load expressed in pounds 
  P is the equivalent radial load expressed in pounds 
   is a constant. It is 3.0 for ball bearings and 3.33 for roller bearings 
 
This equation is also described by the following relationship  
 

  =  C Y  C  C    =  base  BE
base
BE  CW BE












S

A

L

L
54.0

0










L


 C     (4.6) CW

Here the terms are defined by: 
 
  is a constant. It is 3.0 for ball bearings and 3.33 for roller bearings 
 L A  is the equivalent radial load in pounds 

 L S  is the vendor rated maximum bearing load capacity expressed in pounds 

   is the specified lubrication viscosity in lb-min/in  0
2

   is the operating lubrication viscosity in lb-min/in  L
2

C  is a water contamination factor, expressed as the following formula where CW is CW

  the percentage of water in the lubricant 
  

  C CW  = 1.04 + 1.03CW -0.065 (CW)  2

  
Let (L /L ) = 0.5 and    , if the water concentration, CW is 2%, what is the ratio of failure 

rate to base failure rate for a ball bearing system? 
A S 0 L

 

    =  (0.5)
3  [ 1.04 + 0.0206 – 0.000026] =   (0.125)(1.06063)  BE

base
BE

54.0 base
BE

 

    / = 0.1326 BE
base
BE

 
The failure rate would be low at half the rated bearing load, at rated lubrication viscosity and low water. 
   
Example 4.7 - Reliability Calculation from First Principles 
 

Estimate the failure rate of an aluminum faucet adaptor that is internally threaded. The diameter is 
1.25 inch with 1/8 thick walls and threads about 0.093 deep on each wall. 
 

3/4 inch 
opening 
 
1/8 walls 

1.25 inch 

Top View 
of adaptor Side View 

Slice of an 
Aluminum 
Faucet 
Adaptor 

 
Figure 4.4 – An Aluminum Faucet Adaptor 
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With the wall thickness of 1/8 inch and inner wall height of 3/4 inch, this represents the minimum 
material strength for shear, which is the main failure mode of concern. Calculating this gives: 
 

 Ultimate Tensile Strength  = (1/8 in.)(3/4 in.)(12,000 lbs/in. )  = 1125 lbs. 2

 
 Using shear yield at 60% of tensile strength we have (0.60)(1125) = 675 lbs. 
 

 On the diameter we have a maximum permissible torque of  
625.0

675
  = 1080 in-lbs. 

 
A typical customer employing a 12 inch pliers to tighten the nut would place 600 in.-lbs. maximum on the 
adapter. This becomes a static daily load as temperatures and usage continues to maintain this pressure on 
the adaptor. We can estimate reliability. Using a 7% variation on strength and 10% on the load. 
 

 R =  [ 
22 )60()6.75(

6001080




] = [  

516.96

480
] = (4.9733) =  0.999,999,671 

 
This reliability is for a one time stress. If we make the assumption that 4 times a day this level of stress is 
placed upon the adapter through normal use and all other stresses are treated as small, we have.  The 
approximate one year reliability assuming slow accumulation of fatigue is: 
 

  R  = (0.999,999,671) 1460  = 0.999,518,316 year

 
The mean life would be expressed as  
 

  R mean   = 0.368 =  (0.999,518, 316)  X

 
    X = 2074.9 years as the mean life 
 
The equivalent failure rate over this period of time is: 
 

    =  (
9.2074

368.0
)( 

8760

1
)  = 2.025 x 10    failures/operating hour 8

 

or    = 20.25 FITs 
 
Example 4.8 - Maximum Applied Stress 
 
 This example looks at stress in a 3/8 inch diameter brass actuator piece. If we have a brass piece 
shaped as shown in Figure 4.5. The stress applied is considered concentrated at the narrowest point of the 
part. It is assumed that the stress is uniformly spread through the actuator. The end piece of the actuator is 
1/8 inch thick and about 3/4 inch in diameter. It is subject to occasional accidental hits  perpendicular to 
the long axis.. What is the reliability of this situation? 
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1.5  
Hit 

3/8 Inch 

200 lbs. 

 
Figure 4.5 - Actuator Example 

 
 

 Ultimate Material Strength = Area (material strength) = (0.1875) (6000lbs/in. 2) = 
(0.1104)(6000) = 662.7 lbs 

2

 
 The yield strength begins at about 60%, so we will use this number for repetitive stresses of 
tightening or induced by hot and cold cycling of the mating materials. If the piece is 1.5 inches long, we 
have: 
 

 (662.7 lbs.)(0.6) = 397.6 lbs.  The torque on the end is 
5.1

6.397
   = 265.1 in-lbs. 

A strong human (at 95% limit) can place about 150 in-lbs on the part by twisting, turning or by accident 
with a heavy hit. With these numbers we can estimate for a one time reliability. 
 

 R =  [ 
22 )20()56.18(

1501.265




 ]  =  [ 

29.27

1.115
] = (4.218 ) = 0.999,987,674 

 
Fifty such hits a year, assuming slow accumulation of fatigue, would lead to an annual reliability estimate 
of 
 
 

 R year  =  (0.999,987, 674) 50  = 0.999,383,886   and  

 

a mean life of  .368 = (0.999,383,8864)  X

        
X = 1622  years 

 
 The average failure rate might be estimated as: 
 

    =  (
1622

368.0
)( 

8760

1
) = .0000000259  = 2.59 x 10  failures/operating hour 8

    = 25.9 FITs 
 
These failure rate numbers in Examples 4.7 and 4.8 might be approximated by other means as shown by 
the earlier examples.  This is especially true if the material strength was known and the distribution of 
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loads was known. No overt degradation of material was assumed, but is probably present and would 
shorten the life estimates. No change in load or spectrum of loads was assumed. This would also alter the 
results. That is, a strong blow might weaken a low strength part much faster than an average part. Lastly 
there was no consideration of stress concentration. 
 
Example 4.9 - A Simple Reliability Model  
 
Based on the exponential reliability model, the data from Example 4.8 could be re-analyzed by the 
following approach. This may not be the best way to do it, but it is simple and easy. 
 

 Let  R = e   = 0.999,383,886    t

 
  t = .0006163 failures/year 
 

  =  0.00000007035  failures per hour = 70.35  x 10  failures/operating hour 9

 
This answer is 2.7 times higher than that in Example 4.8. Treat this as an alternate solution that may not 
be accurate. 
 
Example 4.10 - A Total Mechanical System 
 

A simple mechanical water handling system shall be made from a 3/8 inch brass piece, a housing, 
an adapter, a spring and two seals. We have already evaluated some (Examples 4.7 and 4.8) but need to 
add the two seals and the housing estimates. The seals will be from the Carderock Handbook just like the 
spring model. We have a model for the two static seals used on a hot/cold water line in a typical U.S. 
household in a city or suburb. 

 

   =   C  C Q  C  C  C  C  C  C    SE
Base
SE p DL H F  T N

 where  C p  is a correction for fluid pressure 

  C Q   is a correction for leakage 

  C DL   is a correction for seal size 

  C H   is a correction for contact stress 

  C F   is a correction for mating material smoothness 

  C   is a correction for fluid viscosity 

  C T   is a correction for temperature excursions 

  C N  is a correction for contaminants in the fluid 

 
 Using typical stresses and extremes we can fill in this equation as follows. 
 

    = (0.85 x 10 ) (0.11)(2.8)(0.7)(1.0)(1.0)(0.87)(0.46)(10) failures/operation SE
6

 

    =  733.7 x 10  failures/operation SE
9

 
 At 4 operations/day over a year we have: 
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    =  1.071 x 10  failures/year  = 122.3 x 10  failures/operating hour SE
3 9

 
 Our system could be complete based upon failure rate if we were to use for the housing failure 
rate double the adapter from Example 4.7. These perform similar functions and would be exposed to 
similar stresses, but doubling it is conservative. The housing need only hold the pressure of the water and 
any fatigue or corrosion also present. It need not be screwed on and off. 
 

Table 4.2- Summary of Component Failure Information 
 

  Component Quantity Fail Rate Total 
   

  Brass Piece 1  25.9 x 10  25.9 x 10  failures/operating hour 9 9

  Seals  2  122.3  “  244.6  “ 
  Adapter  1  20.25  “  20.25  “ 
  Spring  1  2.592  “  2.592  “ 
  Housing 1  40.50  “  20.25  “ 
        ----- 

     System failure Rate   333.84 x 10  fails/operating hr. 9

 

 System MTBF is approximately   
84.333

1000000000
  =  2,995,446 hours life = 342 years 

 
   If the system operates within the standard household stresses and environments with no chemical 
degradation or deterioration, than this system should last on the average about this long based upon the 
constant failure rate model. A time dependent model may produce a different answer and shorter life. We 
recognized that several of the components of the system have failure modes that are really time dependent 
and increasing failure rate. Thus, the 342 year life should be considered very optimistic. The following 
simple example easily shows the problem of using constant failure rate model for a deteriorating system.  
 
 
Example 4.11 - A Non-Constant Equivalent Model 
 
 Example 4.10 may be extended by using a non-constant model for reliability of this mechanical 
system. The following is one of several models that might be employed based upon the information about 
the water system. The dynamic failure rate curve must cross the constant failure rate model at two points 
early in life of a population of systems. There is insufficient detail to determine exactly where the 
crossings occur. Additionally, the exact accumulation of fatigue formula or relationship is not known. 
Figure 4.6 shows the situation graphically, but may represent only a rough estimate. We need to explore 
this model in detail in order to better identify the failure rate curve and where an average life estimate 
generated by Example 4.10 might cross the Weibull curve. 

The best approach to this problem would be to have in-house test data or field data to go with the 
prediction estimates. Since we don’t have this information, we start with a series of reasonable 
assumptions. This can bracket events for us and we could pick a upper and lower failure rate model. Let 
the constant failure rate model cross the Weibull model at one customer year. We choose this point 
initially in order to fix details. It  doesn’t have to be that way. Additionally, since the accumulative fatigue 
is slow, we will select a Weibull model with  = 1.25 which is consistent with slow degradation. Treat 
this as a first estimate to the situation. 
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Figure 4.6 - Water System Failure Rate Curve 

 
  
Since the Constant Failure Rate Number from Example 4.10 is set equal to the Weibull model at one year, 
we let the second crossing of the Weibull curve be set equal. This is: 
 

   333.84 x 10 (8760 hrs.) = 1 - e9
25.1)

8760
(




 
 

   0.0029244 = 1 - e
25.1)

8760
(




 
 

   0.997076 = e
25.1)

8760
(




 
 

   0.002929 =  25.1)
8760

(


  

 

   0.009405 = 


8760
 

 
    = 931,454 hours =106.3 years 
 
 We see from this simple model that in the first year about 0.29% of the units in the field would 
fail. In the second about 0.40% would fail and in third year about 0.47% would fail. What if the constant 
failure rate and Weibull models cross at about one month instead of one year? This piece of information 
changes the calculations above. They become: 
 

   (1/12)333.84 x 10 (8760 hrs.)  = 1 - e9
25.1)

730
(



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   0.000244 = 1 - e
25.1)

730
(




 
 

   0.999756 = e
25.1)

730
(




 
 

   0.000244 = 25.1)
730

(


 

 

   0.001287 = 


730
 

 
 
    = 567,147.3 hours = 64.7 years 
 
Now only 0.54 % fail in the first year and it takes over ten years to get to 20% failures. 
 

Had we selected other choices such as  = 1.50, then the results could be very different. That is 
why real test results and field data are so important to modeling. Caution, don’t assume a model and then 
use this as a basis for estimating warranties or any other money dependent activity. Real data is 
required. 
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5.0 Confidence Intervals in Mechanical Reliability 
 

Up to this point the mechanical reliability examples have shown how to calculate or estimate the 
reliability is a variety of situations. The tools connecting standard mechanical engineering to reliability 
techniques were explored and many connections made. In order to improve mechanical reliability 
applications we need explore additional mechanical engineering tools and techniques. Sometimes this 
requires a computer and more elaborate modeling; at other times simple models will take us a long way. It 
is left to the reader to pursue their own interests in these more complex areas. Normally these are pursued 
when a specific problem arises. The references cited may help along the way, but often few references go 
into sufficient detail without dedicated software. 
 The first section of Chapter 5 will show how to approach some of the common mechanical 
reliability confidence questions. These often arise when dealing with a variety of interesting mechanical 
reliability problems. This area is typically neglected or poorly covered in most books on reliability and 
mechanical reliability. Thus, the reader may find some unique examples.  
 
Section 5.1 - Calculating Confidence  
 
 Confidence measures some estimate of the uncertainty in precisely knowing a point estimate. An 
example of this might be a statement of "the mean weight of a product is 3.5 + 0.2 Kilograms". The most 
likely estimate (highest frequency) of the weight is 3.5 Kgr., but the highest estimate consistent with this 
is 3.5 + 3(0.2) or 4.1 Kgr.. The lowest estimate consistent with the measure is 3.5 - 3(0.2) or 2.9 Kgr. The 
most probable weight is a band around 3.5 Kgr.  Some additional models or prior knowledge is required 
to better estimate the uncertainty about the weight. In this example we have treated the uncertainty as if it 
were a standard deviation based upon a Normal distribution of weight. While the Normal distribution has 
been employed in earlier mechanical examples to measure variability present, it was not directly 
employed to create confidence limits upon a point estimate. Other distributions may also be employed to 
estimate confidence limits. The most famous is perhaps the Chi-Square distribution. Handling of 
confidence estimates usually covers a wide variety of approaches because of the wide variety of 
mechanical applications that exist. A few typical examples will be shown in this chapter. These will range 
from standard statistical calculations and measures to basic estimates of the variability present in a 
specific situation. This chapter will look at methods as esoteric as entropy or employ other measures of 
physical principles to make estimates. The examples presented by no means exhaust the possibilities. 
 
Example 5.1 - Confidence on the Deflection of a Beam   
 
Consider the deflection of a simple beam under a force (load) P centered as shown in Figure 5.1. 
 

           b 
 
 
T 

P 
 
L 
 


 
Figure 5.1 – The Deflection of a Wide Beam under Load 
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 The maximum beam deflection is simple described as: 
 

  = 
EI

PL

48

3

       (5.1) 

 

If P = 15,000 lbs., E = 30 x 10 , L = 24 inches, b = 2 inches, T = 1 inch and the moment of inertia of the 

beam, I = 

6

12

3bT
 and the Tensile Strength of the material is 20, 000 lbs./in.  along this axis. What is the 

deflection of the beam? 

2

 
Filling in the Equation 5.1 and using the moment of inertia equation yields:   
 

   = 
EbT

PL
3

3

4
   =  

)1030()1)(2(4

)24)(000,15(
63

3

x
  = 0.864 inch  (5.2) 

 
The stress along the beam is:  
 

  S = 
bT

P
  = 

)1)(2(

000,15
  = 7500 lbs./in.  2

 
 Now it is time to introduce some variability or uncertainty into this example. If the dimensions 
are specified to within 0.2 inch on a mechanical drawing, we treat these as dimensional tolerances. The 
statistical tolerances can be said to cover the full range of the dimensional tolerances. That is, the range 
of  + 0.2 or 0.4 inch total  is equivalent to 6. The standard deviation becomes 0.067 inch when a normal 
distribution is applied to dimension. Applying the same reasoning for a 10% maximum and minimum in 
the material property, Young’s Modulus or E and to the applied force P with the thickness T would yield 
us the following set of statistical tolerances for the dimensions. 
 
 Let b = 2 + 0.067, L = 24 + 0.067, T = 1 + 0.033, P = 15000 + 500, E = 30,000,000 + 1,000,000 
and beam tensile strength is established at 20,000 PSI minimum. 
 
The nominal reliability can be calculated from the stress as: 
 

  R N  = {
22 )750()2000(

7500000,20



 } =  { 
2136

12500 } 

 
  R  =  {5.852} = 0.999,999,997,571 N

 
This reliability for a one time load is very high! 
 
What happens for the lower limit of this beam? This is the situation where the beam is at the low limit of 
thickness or 0.9 inch and width (1.8 in.) and the load is at the high limit or about 16,500 lbs. The stress 
becomes: 
  

  S  = .max
.min.min

.max

Tb

P
  = 

)9.0)(8.1(

500,16
  = 10,185.2 lbs./in.  2
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This should represent the lowest reliability for all material conditions within specification. The reliability 
estimate for a one time load now becomes: 
 

  R LL  = {
22 )5.1018()2000(

2.185,10000,20




 } =  { 

4.2244

8.9814 } 

 
   R LL  =  {4.373} = 0.999,993,880 
 
Likewise, the thickest beam and lowest load should have the highest one time reliability. This becomes: 
 

   S  = .min
.max.max

.min

Tb

P
  = 

)1.1)(2.2(

500,13
  = 5,578.5 lbs./in.   2

 
This should represent the highest reliability for all material conditions within specification. The reliability 
estimate for a one time load now becomes: 
 

  R UL  = {
22 )9.557()2000(

5.578,5000,20




 } =  { 

4.2076

5.421,14 } 

 
   R UL  = {6.9454} = 0.999,999,999,998,106 

 
    R LL   < R   <N  R  UL

 
   0.999,993,880 <  R N   < 0.999,999,999,998,106 

 
While these numbers may seem close together, they are really significantly different. At 1000 cycles of 
load the reliability range becomes: 
 

   0.993,898,678 <  R 1000   <N  0.999,999,998,106 

 
 
Example 5.2 - Tchebyshev's Approach to Uncertainty 
 
 The following example applies when little is known about the underlying distributions involved 
or the causes of any variation. The following series of approaches are distribution free. They do have 
basic requirements which are identified, but depend upon no underlying distribution. Hence, they can be 
rough estimates of confidence limits and not as precise as  might be desired. With more information, 
better estimates can be made. 
 
Tchebyshev's Inequality may be applied when the underlying variability distribution is unknown but 
thought to be symmetrical around some point or axis. The inequality allows one to estimate the 
uncertainty or confidence of a random variable, x, modeled by a Normal distribution. The number h 
represents the estimated  number of standard deviations away from the mean. The probability of x 

deviating from the mean, x ,can be expressed by h units is then: 
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 P|(x i  - x )| >  h  <  
2

1

h
      (5.3) 

 

This relationship represents the probability that x i  will be found beyond h units of  from x  

 

or stated another way that 1 - 
2

1

h
   represents the probability that x i , an individual measurement will be 

found within  + h of x . This is analogous to the continuous situation with a Normal distribution, 
expressed in units of h. Applications for such confidence limit estimates include pharmacy, tourism, 
fishing industries and analysis of SPC data. 
 
Consider the following example of a rotating component with an expected angle (mean or average 
location) of   =30º and a known coefficient of variation (CV) of 12%. What is the probability that the 
device will be found between 20º and 40º from some reference? 
 
In this situation the CV indicates that the instrument is found closer to the center and a simple 
probability distribution was created to reflect this fact in Figure 5.2. There is a small probability of being 
outside of this range. The CV can be used to calculate an equivalent standard deviation. We have: 
  
     = (0.12)(30º) = 3.6º 

 

40º 
 
      30º 
 

20º 

Top View 
or 
Geometrical 
Lay Out 

20º       30º     40º 

End View 
showing 
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Figure 5.2 – The Probability Plot of a Position Indicator 

 
by Tchebyshev's Inequality, we can write: 
 

 h = 

 i =  

0

00

6.3

3040 
 = 

0

0

6.3

10
  = 2.8 units  

 
is what the 10 degrees on either side of the mean represent. The probability at any point being found 
within this span or 20º is 
 

  P [ 20º <  i  < 40º] >  1 - 
2

1

h
 =  1 - 

2)8.2(

1
   >  0.8724 

 

 62   



Thus, the probability is at least 0.8724 that at any time the indicator  will be found between 20º and 40º 
based upon the scant information known.  
 
 If we wanted a tighter range such as between 25º and 35º, or 1.4 units of h, we can easily 
estimate that probability as well. The equation becomes: 
 

 P [ 25º <  i  < 35º] >  1 - 
2

1

h
 = 1 - 

2)4.1(

1
     >  0.4898 

 
Thus, about half of the time the indicator would be found in this tighter range. 
 
 
Example 5.3 - Gauss' Inequality  
 
 Gauss' approach to this type of uncertainty may be applied to situations where the underlying 
distribution is symmetrical and has a maximum within the range of interest. This distribution doesn’t 
have to be centered over the range in question, which makes it different from Tchebyshev's approach. 
We have a little more information here, so we might be able to narrow the range of uncertainty or 
confidence. The formula for the inequality is shown in equation 5.4. 
 

Middle of 
Range 

Upper 
Range 
Limit 

Lower 
Range 
Limit 

Symmetrical 
Distribution, 
not centered 

20º 30º 40º



 
Figure 5.3 – Gauss’ Inequality Model 

 
We will use the same problem as in Example 5.2 and label the axes with the appropriate limits. Gauss' 
Inequality can be written to describe this situation. It is:  
 

  P|(X i  - )| >  h  <  
2

2

)(9

)1(4







h
     (5.4) 

  
Here,  measures the difference between the mean and mode. It is simply 
 

    = 


ModeMean 
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With Gauss’ Inequality, what is the probability that the instrument will be found between 20º and 40º if 
 = 0.2? Now the same problem using Gauss' Inequality gives us: 
 

 P [ 20º <  i  < 40º] >  
2

2

)(9

)1(4







h
  >  1 - 

2

2

]2.0[9

])2.0(1[4




h
 = 1-0.06838  = 0.9316  

 
represents the probability of being within the range of 20º to 40º even if the distribution is not centered 
in this range. Gauss’ approach only required a maximum were present in the range and the distribution 
was symmetrical. We did need to also know information about the off center distribution. What happens 
if there is a skewed distribution? 
 
 
Example 5.4 - Non-Centered, Non-Symmetrical Distribution or the Camp-Meidell 
Approach  
 What if the distribution is not symmetrical? We can use the Camp-Meidell approach. This 
requires only that the distribution is unimodal and the mode does not equal the mean (otherwise it would 
be symmetrical). The probability formula in this situation becomes: 
 

  P(X < m-h) <  
2)25.2(

1

h
     (5.5) 

The details in Figure 5.4 show the differences between this approach and Gauss’ Inequality. Carefully 
read the following description of the triangles shown in Figure 5.4. 
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Skewed 
Distribution 

Complementary 
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Complementary 
Side 

Mode of 
Skewed 
Distribution 

20º 30º 40º

Main 
Distribution  

C           D             A         E 

B

 
Figure 5.4 – The Camp-Meidell Model 

 
 
Triangle BDE represents the original skewed distribution. The line BC is the complement of the line BE. 
That is, the complement line BC would make triangle BCE symmetrical. The line BA is the complement 
of line BD. Thus, we can create symmetrical triangle BDA as well. With this complement lines drawn in 
we are able to estimate the probability in this skewed situation. 
 
Look at triangle BCE - we can write for this triangle:       
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  P( X < 40º)  <  
2

1)25.2)(2(

1

h
  for half of the triangle (the BE side). 

 
Similarly, we have triangle BDA  on the BD side with 
 

    P(X > 20º) <  
2
2)25.2)(2(

1

h
  

 
The overall probability of being inside these limits, which is triangle BDE is then: 
 

 P(inside upper and lower limits) = 1 – 
2

1)25.2)(2(

1

h
 - 

2
2)25.2)(2(

1

h
 

 
If h 1  = 1.3 units and h 2  = 1.5 units, we have as the probability 
 

 P(inside, h1  and h ) = 1 - 2 2)3.1)(25.2)(2(

1
 - 

2)5.1)(25.2)(2(

1
 = 1- 

125.10

1

605.7

1
  

 
 P(inside, h1  and h ) = 0.7697 2

 
represents the probability of being within the range from near 20º to near 40º even if the distribution is 
not centered in this range and it stretches unevenly about the limits from about 16º  to 37º . 
  
Example 5.5 - The Trivial Confidence Bounds  
 
 Trivial confidence bounds can be established for many situations.  Consider a system built of N 
components connected in any fashion. It is possible to establish confidence bounds on the combined 
reliability of the components. The following approach provides rough estimates of the confidence limits 
of the system reliability. In this example the system will have four identical components, labeled 1, 2, 3 
and 4 each with reliability of 0.9. The bounds on the system will be set by the possibility of a complete 
parallel or complete serial combination. The true system configuration is shown below in Figure 5.5. The 
nominal R  is 0.9891 for the geometry shown below. For more complex systems it is always possible 

to reduce parts of the system to equivalent series or parallel combinations before applying this method to 
the portions that can not be easily reduced. 

.sys

 
The nominal value is calculated by first combining parallel components 3 and 4. This is: 
 
  R  = 1 – ( 1-0.9)(1-0.9) = 1 – 0.01 = 0.99 4&3

 
Next, combine this result with in series with component 2. 
 
  R  = R  R  = (0.9)(0.99) = 0.891 4&3,2 2 4&3

 
Combine this result with the parallel component 1 to give 
 

 65   



  R .sys  =  1 – (1- R1 )(1- R ) =  1 – (0.1)(0.109) = 0.9891   4&3,2

1 
 
 
 
 
2 

3 
 
 
 
4 

 
Figure 5.5 - A Simple System 

 
All Serial reliability possibility for a system may be described by:  
 

  R .sys  =   = R 1R R R  = (0.9) = 0.6561   (5.6) 


N

i
iR

0
2 3 4

4

4

 
 

All parallel possibility   1 -   = 1 - (1 - 0.9) = 0.9999    (5.7) 



N

i
iR

0

)1(

 
Thus, wide limits on the nominal reliability of the system have been determined. 
 
  0.6561 <  R  = 0.9891 <.sys   0.9999      

 
These numbers represent the broad set of confidence limits and are sometimes called “Trivial Bounds”. 
These represent rough estimates of the upper and lower bounds. This approach made no use of 
knowledge about the geometry of the system itself. There should be a better way to narrow these limits 
by making use of knowledge of the system configuration. 
 
 
Example 5.6 - Improved Cut Set Confidence Bounds 
 
 A much better confidence bounds estimate, one based on geometry, can be obtained by looking 
at the geometry. We use the minimum (success) paths or tie sets and minimum cut sets (failure paths) to 
estimate the reliability confidence limits. The situation is no harder to describe than trivial bounds and 
the calculations in this situation are easy. Complex systems are much harder to accomplish and 
telecommunications networks form examples of such complex combinations. If the reader is interested 
in more complex situations see Locks [26]. These are also called Esary-Proschan bounds. 
 
To improve our estimate of the confidence limits, determine the Minimum paths. These are those 
shortest paths that lead to successful system operation. From Figure 5.5 these paths are [1], [2&3], 
[2&4]. There are no other paths to success in this system and are shown as arrows in Figure 5.6 
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Next, identify the Minimum cut sets. These are those fewest cut paths that cause the system to fail to 
operate. From Figure 5.6 these may be identified as cuts across the outputs of components 1 and 2 called  
[1,2], and a cuts across the output of 1 and the combination 3 and 4 or [1,3,4]. These are the minimum 
cut sets for this system.  
 

1 
 
 
 
 
2 

3 
 
 
 
4 

Cuts 

Ties 

 
Figure 5.6 – Cut Sets and Ties Sets 

 
The cut sets will represent the lower bound on the reliability estimate for the system. The tie sets will be 
the new upper bound. These may be calculated by the following formulas. 
 
Cut Sets multiply the probabilities of the states as: 
   

 Lower estimate =  = [1-(1-p 1 )(1-p )][1-(1-p 1 )(1-p 3 )(1-p )]    (5.8)  
 


k

j

n

i
ip

1 1

)]1(1[ 2 4

 
 Lower estimate = [1 – (0.1)(0.1)][1 – (0.1)(0.1)(0.1)] = (0.99)(0.999) = 0.98901 
 
Tie Sets combine the probabilities of the states as follows: 
 

 Upper estimate =  = 1 – [1-p 1 ][1-p p ][1-p p 4 ] ]1[
11




n

i
i

k

j

p 2 3 2

 
 Upper estimate = 1- [0.1][1-0.81][1-0.81] = 0.99639  
 
Thus, the improved Esary-Proschan confidence bounds on the system reliability becomes 
 
  
  0.98901 < R  = 0.9891 <.sys  0.99639 

 
 
This provides a much more useful estimate for the upper and lower system bounds and may be used for 
more complex systems and combinations. 
 
 
Example 5.7 – A More Complex Confidence Bounds Example 
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The following system is made of five unequal components and is an example of a complex calculation. 
The nominal reliability will be calculated as well as upper and lower confidence bounds using the cut 
and tie set approach. 
 

 
Figure 5.7 – A Complex System 

 
This system is made of five components. Components 1, 2, 4, 5 all have a reliability of 0.9 and 
component 3 has reliability of 0.8. The system can be broken into two pieces in order to estimate the 
reliability. This is an example of decomposition. Here it will be over time, with 80% of the time 
component three is operating and 20% of the time component three has failed. These two states are then 
added to obtain the reliability. This is shown as two pieces in Figure 5.8A and 5.8B: 
 

 
Figure 5.8A – When Component Three operates successfully 
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Figure 5.8B – When Component Three Fails 
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Now the calculation of the reliability for Figure 5.8A is based upon component 1 is parallel to 2 and in 
series with the parallel combination of components 3 and 4. 
 

 R Success  = 0.8[1-(1-0.9) ] [1-(1-0.9) ] = 0.78408 2 2

 

 R Fail  = 0.2 [1 – (1- (0.9) )] = 0.19278 2

 
 R System  = 0.78408 + 0.19278 = 0.97686 

 
 
Next, identify the tie sets. Here these are paths [1,4], [2,5] and paths [1,3,5] and [2,3,4] and represent the 
upper bound. This becomes: 
 

 Upper estimate = 1- [1- (0.9) ]  [1- (0.8)(0.9) ]  = 0.99553 2 2 2 2

 
 
Now, identify the cut sets. Here these are paths [1,2,], [4,5] and paths [2,3,4] and [1,3,5] and represent 
the lower bound. This becomes: 
 

 Lower estimate = [1- (0.1) ]  [1- (0.2)(0.1) ]  = 0.97618 2 2 2 2

 
 
Thus, the improved confidence bounds on the complex system reliability becomes 
 
  
  0.97618 < R  = 0.97686 <.sys  0.99553 

 
 
Example 5.8 - The F Distribution for Confidence Limits 
 

The classic formulas for confidence may be derived from the F distribution. These can be 
written as: 
 

Lower Limit  = 

1

1

),,1( 12 




 jn

j
F

jn

j

nn

  Where  n = number on test    (5.9) 

      j = number of test survivors 
      F is the F test, at confidence 1-
 

Upper Limit  = 

),,(

),,(

21

21

)
1

(1

)
1

(

nn

nn

F
jn

j

F
jn

j









       Where  n 1  = 2j  and  n  = 2(n-j+1)  (5.10) 2
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Let there be 10 units on test, with 4 failures over the period of operation and interest. What are the 
confidence limits at the fourth failure at 90% confidence?  Here    n = 10,  j =6,  = 0.90 
 
Look into the F tables and find the fourth failure at the appropriate confidence limits. 
 
Lower limit  F value =  F  = 2.19   and   )12,10,1.0(

 
Upper limit F value = F  = 0.711 )10,12,9.0(

 
Calculating provides: 
 

 Lower Limit  = 

5

6
19.2

5

6


  =  0.354   

 

Upper Limit  =  

)28.2(
5

6
1

)28.2(
5

6


  =  0.732 

 
These numbers represent the upper and lower limits on confidence at the fourth failure. We can likewise 
calculate the confidence limits at earlier failures and all later failures if desired. The confidence bounds 
are: 
 
   0.354  < R = 0.60 <  0.732 
 
 
Example 5.9 - Traditional Chi-Square Distribution Limits 
 
The limits on the fourth failure in Example 5.8 can be calculated by the Chi-square distribution as:  
 

  2

)
2

1,2(


f
 at 90% confidence for a failure ended tests  and  

 

 2

)
2

,2(


f
 and 10% confidence for a failure ended tests 

 
These two calculations are the upper and lower value estimates for this problem as: 
 
   0.368  < R = 0.60 < 0.738 
 
These are close to the more exact limits calculated in Example 5.8. 
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Section 5.2 Accelerated Testing Examples 
 

Accelerated testing with mechanical components can be problematic because many components 
are hard to accelerate until one reaches the limit of catastrophic failure. The following simple examples 
address some of the issues with accelerated testing for mechanical components and systems. This topic 
can be the subject of a book all by itself. 
 
Example 5.10 - Simple Acceleration of a Mechanical System  
 
 This approach is based upon the use of two standard Weibull formulas. The first is the standard 
Weibull equation for reliability and the second equation is the zero failure formula from Abernathy [17]. 
 

  R = e



)(

t
    and    =  

)1ln(

))((

C

AFtN





      (5.11) 

 
Where “t” is the time,  is the characteristic life,  is the Weibull shape parameter,  is the offset, C is 
the desired confidence and AF is the acceleration factor. 
 Let  = 0 , AF = 3 and  = 2.0 indicating a wear situation at normal stress levels. Filling in the 
zero failure formula for 90% confidence formula provides:    
 

    =  2

303.2

)3)(( 2tN
 or    

 

N

t

9

303.2
)( 2 


 

 
 
Filling in the reliability formula provides for a desired reliability of 0.95: 
 

  R = 0.95 = e
)

9

303.2
(

N


 
 

   0.0513 = 
N9

303.2
 

 
   N =  4.988  or 5 samples minimum  
 
This sample size is required to demonstrate R = 0.95 at 90% confidence at zero failures with an 
acceleration factor of 3. 
 

 With R = 0.95 = e
)

9

303.2
(

N


 = e
2)(


t



 
 

  So  0.0513 = 2)(

t

 

And  
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  )(

t

 = 0.2265 

 
  The time to first failure = 22.65% of the characteristic life 
 
 
 Example 5.11  - Alternate Accelerations and Wear Rates  
 
Stress and Wear situations change in Example 5.10. Now let the AF = 5, confidence be 90% and R = 
0.95. Now 
 

    =  2

303.2

)5)(( 2tN
 or    

 

N

t 303.2
)

5
( 2 


 

 

again  0.0513 = 2)
5

(

t

= 
N

t 303.225
2

2




 

 
And so 
  N = 1.796  or 2 samples are required under these conditions. 
 
The difference in sample sizes is in the Acceleration Factor because of the accelerated test conditions. 
 

   R  = e.accel

2)
5

(

t



= [e
2)(


t



]  25

 
The units under test have aged significantly because of the acceleration. Imagine that the accelerated test 
ran 10% of the unaccelerated characteristic life ( i.e. t/ = 0.10). This is about half of the expected 
characteristic life when acceleration is included. Then filling in for t and , we have: 
 

   R  = [e  ]  = 0.7788 .accel
01.0 25

 
 
Section 5.3 - Mechanical Materials Acceleration 

Acceleration techniques apply to the following groups of common materials. 
 
 1.) Iron/Steel/Brass/Copper and other materials 
 2.) Many Plastics 
 3.) Ceramics and similar materials 
 4.) Wood and a variety of natural fibers. 
 
 All of these materials have the property that the material changes tend to vary slowly with the 
application of stress and so are consistent with a Hook's Law model for simple uniaxial systems. This is 
true over some range of stress on the material. 

 72   



 
 Typical stresses that can be included in mechanical acceleration situations include: 
 
 A)  Temperature  B) Humidity  C) Vibration 
 
 D) Shock   E) Chemical attack F) Mechanical Load 
 
 G) Duty cycle   H) Dust  I) UV Light 
 
 J) Corrosion 
 
All of these stresses can be associated with a many slow wear mechanisms. If Weibull analysis can be 
employed to describe them, the shape parameter usually falls in the range of 1.25 to 2.50. This range is 
typical for slow wear, degradation or deterioration. More rapid wear or deterioration may be described by 
a large shape parameter. 
 
Section 5.3.1 - Typical Mechanical Models that Describe Reliability 
 

The Mechanical Bathtub – This bathtub is typically different from an electronic bathtub because 
the center of the bathtub is dependent upon slow wear mechanisms. This means a slow increase in the 
failure rate over time until the onset of rapid wear or the wear out state. This point is usually an indication 
of the end of life of a population. For most mechanical systems we focus upon this slow wear portion of 
the curve 

 

Early Life 
Failures or 
Infant 
Mortality 

Slow Wear 

Rapid 
Wear 

Failure 
Rate 

Time 
 

Figure 5.9 – Slow Wear of a Mechanical Bathtub Curve 
 

There are a variety of processes that lead to slow wear (deterioration, degradation or fatigue) of 
components and systems. A short list of some of these follows. Slow wear is all around us in everyday 
life. Light bulbs have a limited life, switches eventually wear out from the slow accumulation of damage 
associated with actuation. Relays will pit and become high resistant from actuation under load. Car tires 
eventually need to be replaced as the tread becomes thin. Computer keyboards have a limited actuation 
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life and eventually the keys no longer work. Rechargeable electric shavers or cell phones can no longer be 
recharged. All of these represent the slow wear we tend to ignore in real life. Slow wear often occurs 
when material is removed from a surface while operating. Another source of slow wear is the generation 
and propagation of flaws or defects. These tend to grow and accumulate and eventually lead to failures. 
Stress applied to a metallic structure can lead to slow changes of the metal as internal defects or 
dislocations grow and accumulate. Eventually the metal fails from this slow accumulation of defects. A 
last type of slow wear is chemical. Materials oxidize, corrosive by-products might be created, chemical 
reactions that are not fully reversible lead to ultimate failure. All occur at a slow rate. There are three 
models that cover most of these stress-life situations.  
 
Typical causes of Slow Wear 
 
 1.) Sliding or rotating motions of material on material 
 2.) Chemical degradation with use (i.e. rechargeable batteries) 
 3.) Material loss through use (such as light bulb filaments) 
 4.) Rust, corrosion or oxidation of materials 
 5.) Crack accumulation and spread 
 6.) Cumulative fatigue from stress or internal damage  
 7.) Limits of material strength, brittle fracture or creep 
 8.) Exhaustion of a chemical processes (i.e. battery run down) 
 
Any of these processes may be subject to slow wear which limits life or look like slow wear as 
components age. This situation is rather common and may range from tire wear to solder fatigue. There 
are a small number of basic models that may relate the stress versus life in these situations. The following 
is a short summary of some models. 
 
5.3.2 - Typical Stress-Life Relationships 
 
 As stress is increased the failure rate of a mechanical function should also increase. The 
relationship is usually not linear. For some mechanical situation of cyclic stresses there are often two 
regions that describe the degradation with use or operation. One represents slow wear and the other a high 
rate of wear. Figure 5.10 shows this situation. This was discussed in Chapter 3 in some detail. This dual 
range of relationship often limits the ability to accelerate a mechanical test. Figure 5.10 shows this 
graphically. 
 

Overstress 
Region 

Rapid 
Wear 
Region Region of 

Slow Wear 

Log Time or Log Cycles

Log 
Stress 

 
Figure 5.10 – The Dual Stress-Life Relationship 

 74   



In order to accelerate mechanical functions, the stress or load must be increased. Hoverer, there is 
typically only a narrow range of the stress over which slow wear may occur. As stress continues to 
increase, the Stress-Life relationship may move onto the high rate of wear curve. An accelerated life test 
in this region can’t easily be extrapolated into the slow wear region and retain meaning. Typically the 
failure modes are different from the slow wear region to the high rate of wear. As stress continues to 
increase, the component will have a very short life. Near the upper stress limit the overstress region may 
be encountered. In this region life is very short and failures have little relationship to the slow wear 
region. This is why we often limit the level of stress applied to a mechanical system. Meaningful 
acceleration can’t always be accomplished by test. How can we tell if there would be a problem? Use the 
following activities as a guide. 
 
 Look at the response to stress at lower stress 
 Look at the failure modes in the slow wear region 
 Compare the response in a higher stress region to the low stress region 
 Compare the failure modes in a higher stress region to the low stress region 
 If they appear different, you are probably out of the slow wear region.  
 
With this knowledge, basic mistakes can be avoided. What do I do with test data from several levels of 
stress? The answer is analysis of course! 
 
5.3.3 - Complex Mechanical Models – Arrhenius, Power Law or Eyring 
 
 There are three models that cover a lot of failure modes in mechanical reliability. The first is 
Arrhenius. It was named after Svante Arrhenius, a Swede chemist, and Nobel Prize winner (1903). It was 
he who first observed that the rate of chemical reactions is temperature dependent. This means any failure 
mode dependent upon chemistry might follow the Arrhenius relationship. Thus anything that oxidizes, 
corrodes, rusts or generates chemical by products might follow this relationship. All failure modes that 
depend upon diffusion to propagate should follow Arrhenius. All of these should be temperature 
sensitive. Equation 5.12 shows the Arrhenius formula. 
 

Life = A e kb

a

TK

E

         (5.12) 
 

Here,   E  is the activation energy which is an amount of energy needed to drive a chemical reaction. a

 K b  is Boltzmann’s constant and is set at 8.615 x 10 electron Volts/ºK 5

 T k is the temperature in degrees Kelvin or ºK, which is ºC plus 273 

 A is a scaling constant 
 
Typical mechanical activation energies run as low as 0.05 eV to 0.2 eV. 
 
The second basic model of mechanical reliability is the Power Law. This relates and inverse power of 
Stress to the Life. Equation 5.13 shows this. 
 

  Life = B(S)        (5.13) N

 
 
Here ,  S represents a stress 
 -N represents a material constant, the minus is kept to show life gets shorter at higher stress 
 B is a scaling factor 
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Typical mechanical exponent values of N, run as low as 0.5 to 7.0. This relationship tends to work for 
many processes. It isn’t always this simple. 
 
The third basic model of mechanical reliability is the Eyring relationship. This relates and inverse power 
of Stress to the Life combined with a temperature term. Equation 5.14 shows this relationship with an 
interaction term. This means at some level, the combination of stresses is non-linear. 
 

  Life = C e kb

a

TK

E

 (S)  eN kb

a

TK

ESD )(

     (5.13) 
 
 
This equation shows both a Arrhenius term and a Power Law term. The third term has both stresses 
present (both T and S) in it. The new additional unknowns are: 
 
 C – a scale factor 
 D – a scale factor for the interaction term. It is often small 
 
 
A last word about acceleration - Many mechanical components have a low acceleration with respect to 
the stresses. They are on the slow wear curve. Therefore, it is often difficult to conduct a reasonable test 
until the level of stress gets higher.  Therefore, the typical electronic examples with an acceleration factor 
of 10 or 50 are not too useful. There are three basic ways to accelerate mechanical systems. 
 

1) Raise the level of a stress of interest (i.e. temperature) 
2) Increase the duty cycle of operation 
3) Raise the level of a second stress, one that is also related to one of interest ( i.e. Humidity, 

chemical concentration, UV light etc.) 
 
Beyond these three approaches there are not many other ways to accelerate mechanical items. 
 
Section 5.4 - Discrete Mechanical Systems 
 
 Up to the present time all of the examples of applications of mechanical situations have been 
treated as continuous distributions. The following example from Rao [3] shows how to handle the rare 
situation of a discrete distribution that sometimes occurs. These examples can look a little artificial, but 
serve as good approaches.  
 
Example 5.12 - A Weakest Link in a Discrete Parallel System 
 
 The following system is constructed of a small number of vertical beams. They all support a load 
by sharing. These are treated as discrete elements in a system. If one beam fails, the remainder supports a 
larger load. In the following example, the load has two possible states. Sometimes it is one state and 
sometimes another. This complicates the analysis of a discrete system. 
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Main Load 
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Figure 5.11 – The Discrete Strength-Load Situation 

 
The strength probability is discrete and has two states, call them state 1 and 2. They are: 
 

P 1 (S)  =  
8

3
  of the time the structure can safely carry 800 lbs. each  or  

P (S)  =  2 8

5
 of the time the structure can safely carry 1600 lbs each 

 
 Describes a two state strength for each of the three discrete elements holding the load. This is a 
parallel load share situation. Selecting different support structures shows the influence of two possible 
strengths. 
 
 Discrete Load Distribution 
  

 P 1 (L)  =  
8

1
   of the time a  2500 lbs. load may be present 

 P 2 (L)  = 
2

1
    of the time a  3500 lbs. load may be present   

 P 2 (L)  = 
8

3
    of the time a  4500 lbs. load may be present 

 
The Minimum Strength of 2400 lbs. would be unreliability for all load states. The next strength state of 
3200 lbs. would be reliable only for the minimum load of 2500 lbs. The third strength state of 4000 lbs. is 
reliable for loads of 2500 lbs. and 3500 lbs. The highest strength state of 4800 lbs. is reliable for all three 
loads. Table 5.1 shows this information with probabilities all summarized. This allows us to do a discrete 
interference calculation for Strength and Load. The interference shows the reliability for the complete 
situation. 
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Minimum 
Strength Minimum 

Load 

Maximum 
Load 

2400   2500     3200    3500       4000 4500    4800 
          Pounds

Maximum 
Strength 

  
Figure 5.12 – The Distribution of Strength and Load 

 
     

Table 5.1 – Summary of Discrete Strength and Load 
 

R  = S 1  + S  + S    Probability of  Cumulative 3 2 3

 Four Possible States   Each State      Probability - P  S

  

Min. Strength  = 3(800)  = 2400 lbs.  (
8

3
) 3  = 

512

27
   

512

27
  

 

Next State  = 2(800) + (1600) = 3200  3(
8

3
) (2

8

5
)  = 

512

135
  

512

162
  

  
 

Next State  =   800 + 2(1600) = 4000  3(
8

3
) (

8

5
) = 2

512

225
   

512

387
  

 

Max. Strength  = 3(1600) = 4800           (
8

5
) 3  =  

512

125
  1.00 

 
 
 What is the reliability for this simple discrete system? We will need to calculate "the 
Interference", which is related to the probability of failure of this type of system. Table 5.1 holds the 
probabilities we will need. 
 This problem is different from prior continuous interference examples for it describes a discrete 
system with discrete states. There is no simple distribution of strength and loads. We will summarize the 
discrete states to estimate the reliability. 
 

 P fail   =   = (


3

1i
LS LP

512

27
)(

8

1
 +

2

1
 +

8

3
)  + (

512

135
)(

8

1
+

8

3
) + (

512

225
)(

8

3
)  =  0.4482 (5.14) 

 
 P fail   =   Prob. of 3 failed states + Prob. of 2 failed states + Prob. of 1 failed state 

   
So      
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   R  =  1 - P    =  0.5518 fail

 
The reliability is so low because the load overlaps the strength distribution by a large amount at all but the 
highest strength. 
 
How do we improve this situation? Consider the possibility that the lowest state of strength can not 
occur. That is we can prevent this state and thus only have two other states left.  We now have: 
 

P   =   = (fail


2

1i
LS LP

512

135
)(

2

1
+

8

3
) + (

512

225
)(

8

3
)  =  0.3955 

 
  
    R  =  1 - P   = 0.6045 fail

 
 Why didn't this change much? It is because the lowest strength state was a very small fraction of the 
possibilities and so a small contributor to the overall reliability. 
 
Example 5.13 - Estimating Confidence Limits for a Discrete Situation 
 
The Upper and Lower confidence limits can be established for this discrete situation of Example 5.12. 
This is a critical estimate when we are not otherwise sure of the expected limits. Classical methods of 
calculation do not easily work here.  We will calculate these confidence limits by dividing the load in 
three and comparing it to a single element strength. We look at the probabilities of this new system being 
in each of the states. Remember this is comparing 1/3 of the load to the strength of each column. 
 

 P   =  = (.Indfail 


3

1i
LS LP

3

1
)(

8

1
)  + (

8

3
)(

2

1
) + (1) (

8

3
)  = 

64

39
 =  0.6094 

      
     Loads    833 lbs.       1167 lbs.    1500 lbs. 
  
 Each contribution represents the simultaneous probability of the load and strength both being in a 
given state. The following formula represents an estimate of the confidence bans for the situation. It is 
based upon the minimum single element probability failure as the lower end limit and the combined 
probability of all elements to be in a minimum state as the upper end limit. This is mathematically:  
 

 Lower Confidence Limit = 1 – Probability of a single failure = 1 - 
64

39
= 0.3906   

Upper Confidence Limit = 1 – Probability of three failures = 1 – (
64

39
) 3  = 0.7737 

  
Thus the discrete confidence limits on the discrete reliability are: 
 
 
    0.3906 <  0 .5518  <  0.7737 
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Appendix - Cost Issues during the Development of a Reliable Product 
 
 
Summary 
 
 Two new medical blood analyzers (laboratory instruments) were designed, developed and  
readied for production. Near the end of this development activity, prototype systems were tested  
and exhibited lower than desired reliability in customer simulation life tests. It was unclear to the  
designers why the instruments had performed so poorly since "the best design criteria and practices"  
were employed. This section will detail the project findings at this point in time, as well as, the methods 
used for product improvement and the ways to improve overall customer satisfaction.  
 Some of the technical choices and tradeoffs for improving quality, reliability, maintainability, 
projected field performance, overall development costs are identified. The critical element of some of the 
"management decisions" that strongly effect field quality and reliability will be identified. The reliability, 
maintainability, support and improvement data should prove highly instructive for any commercial or 
consumer company wishing to improve the product development process. Benchmark data is presented to 
aid others in establishing progress points during development.  
 
Detail of Two Systems 
 
 The problem of producing a reliable complex medical equipment system (the same problems as 
producing any product; see BusinessWeek Nov. 91 and BusinessWeek Aug. 93) can be shown acutely by  
the following Management choices usually include "how much quality and reliability" to design into the 
system and how to "cost effectively" produce the "best system" for the company and the customers. These 
are only two of the problems that face any development project. Two systems will be employed to 
illustrate some of the many choices.  
 

System A is a small, stand-alone instrument with moderate software needs, simple standard 
hardware, a precision mechanical motion section as well as electronics and fluidics handling subsystems. 

 
 System B is, by contrast, a large, fully integrated complex system that adds extensive complex 

computer power and software control, limited simple mechanical motions, but adds complex heating and 
cooling area requirements to the mix described by System A.  

 
Some of the lessons learned by each project, the choices made and the problems resolved provide 

a series of benchmarks and valuable examples. This paper is restricted to some aspects of quality, 
reliability and related design and development issues. These include the prediction of reliability, 
measurements of subsystem reliability, the quantity of warranty spares, the cost to create trained repair 
people, costs for special set-up and debug of a delivered system, the special needs for unexpected repairs 
and all the costs associated with monitoring and controlling these activities. Through this information, the 
typical quality, reliability or development engineer or project manager will have sufficient meaningful 
benchmarks and a partial road map of common do's and don'ts. Many books have been published that talk 
around this area or speak in general terms. Few books or articles talk in sufficient detail about quality,  
reliability, maintainability, time to market, design features, warranty support with all of their associated 
costs and the "best ways" to balance their diverse requirements in order to create an optimum product 
through a tuned development process. (Shima, 1991,  pp 29, 32, 44). To quote Ted Levitt,  
 

"Satisfaction is, as it should be, mute. Its prior presence is affirmed only by its subsequent 
absence. And that's dangerous, because the customer will be aware only of failure, of 
dissatisfaction, not of success or satisfaction."(Levitt, 1986)  

 

  81   



                      
   

The Development Process 
 
 The following is a short summary of the design and development process for instruments A and 
B. These are discussed because they are typical of the development cycles of many products in other 
fields. Improvement activities and metrics for the development process and subsequent field deployment 
are shown at the end of this section.  
 
 System A is a small table top instrument that was designed to operate about 10 hours per day  
about 250 days of the year. A target reliability of no more than 4 catastrophic (Type A in Table I)  
failures per year was established as a goal early in the development process. This number was based upon  
market research and competition. The development process was set at 18 months. The product was  
designed with existing "off the shelf" mechanical and electronic technology. It was developed by a  
small dedicated staff of  development engineers ( no people with quality or reliability background were  
on the development team). Several prototype systems were built and employed by the development  
team to debug and improve the initial design; two prototype systems were dedicated to the concurrent 
software development and one prototype system would be dedicated to development chemistry work. 
These three original prototype systems initially seem to work, but were not very reliable in any of the 
prototype development work. For six months the hardware development group and the software group 
worked with the fragile prototype systems waiting for the improved versions ( more than 10 
preproduction units). About six months into the development cycle, ten preproduction systems were built 
by manufacturing people to marked-up preliminary process documents. By the third preproduction system 
built, a clear series of continued problems was present. None of these first three new systems would work 
for more than several days. In fact, they were worse than the earlier systems. The new systems showed a 
variety of new problems, not previously shown. 
 
 System B was a large complex system with a planned four year development cycle and  
a large, fully representative project oriented staff. This staff included many development engineers,  
advanced manufacturing engineers, quality people, procurement and production control people. This 
system is three to four times as complex as System A and was primarily a software-controlled system 
with some new technology that was not yet fully developed. Reliability goals were established as less 
than 5.0 customer failures (catastrophic, type A only) in the first year after release. The First year of 
development was primarily working with crude parts of the full system. During the second and 
third year of the development process a series of prototype subassemblies had been independently 
operated through the equivalent of five full years of customer operation cycles. These were primarily 
wear type tests and the 16 subassemblies operated independently without characteristic system loads. No 
significant quality, reliability or design issues were identified as a result of these wear out life tests. 
Systems were run for a pre-determined time and the tests shut down with few real failures observed. The 
records of this expensive test life test ($500,000) were actually very sketchy in retrospect. Later, in the 
fourth year of development, the first full prototype systems were assembled under the direction of the 
development team. None of the initial prototype systems would actually operate. The problems ranged  
from mechanical assemblies that would not fit into each other, assemblies that crashed into each other 
during operation, electronics that were designed to different standards and so would not talk to each other  
and software that failed to properly identify the range of motions and limit the motions to safe conditions. 
This caused an additional six month internal delay while the many problems were fully identified and 
eventually resolved. About a year after this point, in the fifth year of development a few preproduction 
systems were  then assembled. This was under the guidance of the development team. These systems did 
not work well either. The reasons included the fact that at this point "no clear definition of system  
failure" had been identified. This complex system could have several levels of non-performance, not all  
of which would be catastrophic. So system failures would not be obvious to the typical customer. This 
lack of clear definitions had earlier masked some of the real problems, which tended to be written off as 
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"unlikely to happen in production" by the development people. Many of the problems were ascribed to 
manufacturing errors as causes. 
 

Table A1 - List of Typical Levels of Failure of a Complex System 
 
Type A - This catastrophic system failure causes immediate system shut down and loss of information.  
The customer cannot resolve the problem and a technical service visit is required to return the system to  
full operation. The system is shut down during this time while waiting for a service technician. 
 
Type B - This catastrophic system failure causes a system shut down and possible loss of information.  
The customer is able to return the system to operation by a series of actions that may be directed by  
technical service people via phone or email. Down time is typically in excess of one-half hour. Examples 
include small software errors, fuse failures, monitoring sensor failures or other hardware faults. 
 
Type C - This system shut down can be resolved by the customer with little or no outside help. There  
may be a loss of some data, but the system can be returned to operation quickly. Typical situations 
include unexpected power downs, unexpected system resets, interruptions of the system normal operation 
by the customer and electrical noise present within the system or around the system.  
 
Type D - The system does not operate properly, but this may not be readily apparent to the customer.  
Special knowledge or tools may be required to identify the fact that the system may be providing  
questionable data. Normally a customer cannot detect this level of system non-performance. The system 
appears to be operating correctly. 

 
Possibilities for Improvement 
 
 While system level definitions of failure are valuable we also need component level  
Definitions of failure. Between these two types of definitions we may be able cover most of the failure 
possibilities and system faults.  
 

Table A2 - U.L. Definitions of Critical Components for Smoke Detectors 
 
Non-Critical - A component is non-critical if all of the failure modes will not result in a trouble signal  
or have no effect on the intended operation of the smoke detector for alarm and trouble signals and will  
not affect the detector sensitivity.  
 
Critical - A component is critical if two or more of the failure modes of the component, which will  
affect the intended operation or the sensitivity of the detector, do result in a trouble signal. 
 
Conditionally Critical - A component is considered conditionally critical if only one failure mode of the  
component will affect the intended operation or the sensitivity of the detector, and it does not result in  
a trouble signal. 
 
Trouble Signal - A trouble signal may be indicated by energization of an audible signal, energization of  
a separate visual indication (amber or orange), or de-energization of a power-on light. If a visual  
indication is depended on to denote a trouble condition, it shall have a documented predicted failure  
rate. 
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 The development of any complex hardware & software system can be described as a series of  
difficult choices (Shima 1991, p44). This might be described as a balancing act between system 
performance, the development schedule, feature sets, total cost to develop, total cost to manufacture, 
system quality, system reliability, field warranty failures and after warranty support. The object is to 
optimize the combination of all of these. No one of these metrics can be neglected or can dominate the 
others. If this happens, the other metrics will suffer and cause increased development costs and delayed 
release to production. Development is truly a complex juggling act at each stage of the process. Figure 1 
shows this schematically.  
 We now ask a difficult question, “What were the expectations of the project management people 
for either system A or B?” Each project had established reliability, maintainability, manpower, feature, 
time to develop, cost of production, quality and overall cost goals. In retrospect, some of these goals were 
either incomplete or stated in a misleading fashion. Both projects focused upon the development cost, 
development time, features, and manpower goals from the start for both Systems A and B projects. 
Reliability, quality, maintainability and warranty were treated as "secondary project goals" during the  
development process. A few examples of potential improvements and appropriate metrics any project  
might include are the following: 
 
 1. Establish well defined minimum quality and reliability goals early in the development  
 cycle for all major subassemblies of the product. This includes electrical and mechanical 
  hardware, fluidics, and software. 
 
 2. Establish high quality and reliability goals for suppliers (critical ones) of all important or  
 critical parts, subassemblies or purchased assemblies early in the development process. This is  
 a prototype stage activity that should be updated during preproduction and production stages. 
 
 3. Perform a preliminary reliability prediction during the prototype development for the whole  
 system. This includes all electrical and mechanical hardware, fluidics, and software. Compare the 
  prediction results to the marketing and design goals. Use this prediction to help identify important 
  and critical parts, subassemblies and purchased materials. 
 

4. Create measurable design verification test and design validation test goals. Be sure these  
development activities cover all aspects of the project including reliability measures and customer 
feature measures.   
 
5. Consider the possible failure modes of critical parts of the system. Perform a failure modes 
effects analysis (FMEA), a hazard analysis (HA), and a fault tree analysis (FTA) during the  

 prototype development stage. Use these tools to help identify important and/or critical parts,  
suppliers, materials and system functions. Identify a list of safety issues, customer misuse and 
abuse potential and misinformation potential, if these exist at customer’s sites. (McLinn, MDDI 
1994). Next define a series of tests that verify if the failure modes have been eliminated or 
reduced in impact. Close the loop on potential problems.  

 
6. Establish a series of short, highly accelerated, multiple-environment stress tests that cover the 
 major functional parts of the system, or better yet, of the whole system. These are used to 
evaluate the potential field performance and reliability. Remember to operate the system in a 
fashion similar to that of a worst case customer. Be wary of interactions between various 
hardware assemblies or hardware and software. Define a failure before the start of the test and 
keep definitions similar to one a customer would use. Be sure to operate any life tests for more 
than two years of equivalent customer operation on each system in this test.  
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7. Establish metrics for performance measurements during the whole development process.  

 Examples include manpower needs, operating costs, reliability, parts failures and projected 
warranty field failures. Use these metrics on future development projects as a “lessons learned”. 
 
 

   
  Project 
    Cost 

 
   Quality 

 
Schedule 

 
Reliability 

Field 
Support 

 
 Features 

 
Performance 

 
Warranty 

 
Figure A1 – The Eight Dynamics of a Development Project 

   
   
 8. Consider running a test such as HALT (Highly Accelerated Life Test) on all eligible 
  assemblies or the whole system. Be sure to fix the hardware and software problems discovered. 
  These failures will be new and different from verification test results or life test results. 
 
 9. Keep good data at all steps of the development. Maintain a log book with every system or 
  long all failures into a computerized system that documents causes, problems and corrective 
  actions. All activity of and on the system should be logged as well as an "system operating time 
  meter" and an "on time meter" or an “operating cycle meter”. These are important metrics needed 
  for later tests and customer simulations. 
  

10. Be sure your development team has the proper depth and breadth of people at the start. 
Training is key for success. You note that neither team (system A or B) had people familiar with 
or trained in basic reliability. One team, system A, had no quality people involved in development 
until very late in the development process when it became time to transfer the project to  
production. 
 
 
 

  85   



                      
   

 

 
Figure A2 – The Development Failure Breakdown Observed on System A 
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Figure A3 – The Development Failure Breakdown Observed on System B 
 
 Metrics for the Systems 
 
 The following is some of the details and metrics of Systems A and B development. They are  
typical of those any company might find useful. One metric is the breakdown of the valid failures by  
causal area. This is shown as a pie chart with design, manufacturing, supplier (component), operator  
and software issues. Figures A2 and A3 shows examples of this breakdown for Systems A and B during 
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the development cycle. We expect to see this pie chart to have a strong design portion early in 
development and a lesser design dependence as development proceeds. It is clear that System A has a 
much bigger percentage of design related problems during development while System B shows software 
is the biggest development problem. Figure A4 and Figure A6 show the pie charts for System A in the 
first year after release and for the second year after release. These pie charts document that as this project 
moved from development into production, the design portion of the pie fell as software and customer 
related problems increased. System B was a bit different; here as the design portion and supplier portion 
increased in the field while software problems declined.   
 
Design Manpower - System A found that they needed to add two people for 1/2 year (about a 10% 
increase in manpower) each during development, once they identified serious reliability and quality 
problems were present in the prototype and preproduction units. This manpower increase allowed them to 
stay close to the original development schedule. The project management then elected to release an 
incomplete product and to spend the first year after release to production "working out" the remaining 
bugs. This turned out to be a costly strategy as documented in Table III. The "failure to do a good job" 
during development and the cost to redo the design during development was estimated at less than 1/4 of 
the cost that was later accumulated to fix the problems. This was despite hiring two additional people part 
time to help with System A development. 
  System B added 20% additional people to their development team and extended the development 
time by 50% in order to avoid releasing a product that would not meet their corporate goals for 
performance, reliability and customer satisfaction. Since System B was much more complex than System 
A, this appeared to be wise. Total costs for this decision were not available. It is clear however that 
avoidance activity would have cost much less than the costs to rectify the problems in the field. 
 
Schedule Adherence – The System A project elected to stay close to the original schedule by cutting 
some corners and adding people to solve "immediate problems" once they were discovered. No 
manpower was allocated to any longer range issues such as working with suppliers and problem 
prevention. Manpower was added to continue to implement a series of mechanical improvements  
beyond the first year of production. In reality, at 15 months post release a series of improvements were 
still being incorporated. This 15 months would be more properly counted as part of the development time. 
Such an extension would represent more than a 60% increase to the original schedule 24 months. The 
costs to find an incorporate the System A electronic, mechanical, fluidic and software failures during an 
extended development period would have been less than retrofitting the same problems in the field. 
Additionally, the negative customer perception of this new system would have been reduced. The clear 
trade-off was to ship a known faulty system early in order to obtain the revenue. 

System B did extend development by 50%, clearly incurring a large increase in development 
costs in order to avoid high support costs later. Note the difference in choices. Both projects were delayed 
by about the same percentage of time in order to achieve their ultimate project goals. One project (A) was 
"officially released" and fixed in the field while project (B) elected to fix the development problems prior 
to release at lower relative costs to the project. Both decisions cost each company money, but the 
Company B retained a reputation for producing an effective and reliable system. Company A still retains 
a reputation for not producing a reliable system, even though by year three after product release, System 
A was performing well. 
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Figure A4 – First Year Field Data from System A 

 

 
Figure A5 – The First Year Field Data of System B 

 
Reliability - The System A initial reliability goal was “less than four unexpected failures per customer 
year”. It was not met at product release and for several years. The first year product number was 
approximately 12 failures per system per year during the first six months. This was reduced to about 6.0 
in the second six months of the first year. It later achieved about 4.0 just during the second year after 
release. Two major field maintenance activities were required in addition to achieve these numbers. This 
was in addition to repair of any failures to achieve reliability improvement. A reliability prediction for 
this System A had been based on the Bellcore handbook 1992 and suggested the electronics might be 
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capable of an MTBF of about 2.0 failures per year. Thus, System A operating at about 4.0 failures per 
year for all reasons (electronic, mechanical, fluid, software) could still be improved based on the  
field results. Even though the initial system reliability target was 4.0 failures per system per year for all 
reasons, it was clear after a year in the field that System A could do better.  

System B was initially operating at approximately double the desired release goal of 5.0  
(type A failures only) failures per year during development tests. This was brought down to less than 5.0  
at about a year after release to production. A reliability prediction (electronics only) for System B, 
performed to Bellcore (1997) indicated an expected failure rate of 1.5 electronics failures per system per 
year on this scale. Thus System B, at 5.0 failures per system per year, having achieved its original 
reliability target, could likewise still be improved. A Software reliability prediction was not made for 
either system, though software was not a big contributor to system failures by the end of year one in the 
field. 
 

 
Figure A6 – The Second Year of Field Data for System A 

 
Maintenance Activities - Planned maintenance activities were few for both systems. System A had a  
planned maintenance activity level of 1.0 per year, but required two maintenance actions for the first two 
years to reduce a specific design problem. System A reduced the unplanned field repair team support staff 
from 5 people to 3 people by the end of the second year in the field. As the failure rate dropped from 12 to 
under 4 the extra manpower became unnecessary. The two "extra" people represented six man years that 
should have not been needed initially because of the failure to do a good job during development.  

System B had a planned maintenance of 2.0 per year and achieved that number by the end of the 
first year in the field. System B maintained a constant service level through the first two years. No extra 
people were needed to support the system in the field even though it did not initially meet its reliability 
goal. This represented an extra cost of 0.5 to 1.0 extra man-year. 
 
Quality and Design Simplification - Not long after release System A people recognized that many of  
the problems were related to shortcuts mandated during the original design development process. The 
project schedule had been the top priority for this system and the rest of the project performance metrics 
(reliability, quality, maintenance, costs and warranty etc.) had suffered because of the drive to stay on 
schedule. This project elected to "clean up" and simplify the design deficiencies after it went into 
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production. Part of the improvement was a massive mechanical redesign. It consisted of combining 
mechanical parts, eliminating components and improving overall design tolerances. This activity reduced 
procured parts by 30% ( i.e. 30% fewer parts went into every system) and made them easier to produce to 
specification. This activity also reduced the manufacturing time by 40% with overall "cost to 
manufacture" being reduced by more than 50%. This was a reflection of fewer required adjustment 
operations and many fewer quality rejects during manufacture. This improvement activity strongly aided 
system reliability by reducing subsequent field failures in the second half of the first year and into the 
second year after release. In fact, for systems manufactured in the second year, the mix of failure causes 
had changed (shown in Figure 6A).  

System B people elected not to simplify their design and did not reduce manufacturing time or 
costs more than 10% by and improvements. No second year data is available for this system. Engineering 
cost estimates suggested there was a 30% cost reduction potential available that was never implemented 
for System B. This was because the project had taken too long and the necessary engineers were now 
needed on projects elsewhere. 
 
Issues with Spares - System A, not having performed a reliability prediction early in the development, 
elected to set aside spares parts at the rate of 25% of planned manufactured systems. After three years, 
except for two problem systematic parts (design issues), the highest need for spares was found to be a 
cumulative 10%. A large quantity of spares stock (tied up for three years) was then returned to 
manufacturing stock as a big surplus. This represented a large amount of development money (about 
$2,000,000) tied up in unnecessary spares stock with its carrying charges.  

Project people for System B had employed past experience and a detailed reliability prediction 
early on in creating their spares policy. No large quantities of parts were set aside. Table III illustrates  
the cost associated with this type of activity and these decisions.  
 
Reliability Growth - System A showed "reliability growth" especially during the first two years in 
production. A number of activities were involved. These included reliability screens of some parts, 
special testing of assemblies, selection of parts, design changes, manufacturing changes, system set up 
changes, training changes and maintenance schedule adjustments. All of these activities contributed to the 
overall improvement observed by the customer. Figure A7 shows this in two ways, first there was 
continuous changes made as serial numbers increased. Secondly, a given block of serial numbers showed 
reduced failures over time. 
 

 
Figure A7 – Performance of Successive Production Lots by Serial Number of System A 

      4.0 
 
Failure 
Rate in 
Fails/Year 

1 Year

S/N 1-15 
 
S/N 16-30 
 
S/N 31-45 

 

  90   



                      
   

Costs Estimates - For System A, all units in the field during the first six months would require an extra 
73 service calls and 43 customer complaints. A low “burden factor” of 2.1 was selected for calculations. 
The average failure rate for the time interval was 5.50. A similar column was generated for a hypothetical 
situation of 2.4 failures per year. With the numbers shown in Table III, we can calculate the return on 
investment (ROI) concerning the decision to take proactive actions not reduce the early failures. We will 
ignore the cost of the development engineering staff and support groups not involved in the 
improvements, since this ROI refers to the improvement decision only.  
 

Table A3 - Table of Typical Costs Associated with System A 
 
Activity Area   Total Estimated Costs, Activity Burdened 
                                                                                                       at 5.5F/S/yr at 2.4F/S/yr 
 
Repairs at 73 calls, each  $1250 or  (73)($1250)(2.1)  =  $191,625 $73,623 
Service calls , 43 at $250 each  or   (43)($250)(2.1)  =  $  22,575 $  9,843 
Field service people salaries     $152,250 $102,250 
Spares stock, 6 sets , 10% carrying charge  (6)(1.1)(16,000) = $105,600 $52,800 
Field spares, 4 sets, one with each repair person               $  70,393 $52,800 
Development support      $  31,500 $10,500 
Reports, special                   $    5,000 $  2,000 
 
Improvement efforts 
Engineering       $  45,000 $10,000 
Profits from lost sales      $  35,000 $25,000 
Failure Analysis      $  36,500 $15,927 
Manufacturing Efforts      $  14,000 $  6,000 
Totals        $704,443 $360,743 
 
      Potential Savings  = $343,700 
 
The estimated cost of additional engineering efforts to reduce the failure rate from 5.5 to 2.4 
failures/system/yr are estimated as $57,000 in additional costs with the following additional savings: 
 
Engineering support, people savings    $  48,000 
Design simplification, reduced drawings, orders and stock  $141,000 
Field service reduced changes and documents   $  12,000 
                                        Total additional Savings  $201,000 

 

ROI  =  
000,57$

000,210$700,343$ 
  = 9.56 

 
Thus, it makes sense to reduce the expected level of failures, reduce spares and support manpower. The  
reason that this ROI number is so high, is that most of the identifiable costs are included, but not  
background support costs. The costs for decreased parts, fewer orders, lower stocks and reduced failure  
analysis were neglected. These were almost half of the expected improvement savings for System A. 
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Conclusions 
 
 The efforts of management decisions on improvement efforts for System A and System B have  
been documented for impacts on development costs, follow-up engineering support costs and expected  
field failures. These numbers represent a series of decisions that can be made as part of a reliability  
improvement effort (McLinn 1994, AQC). Profits from lost sales and the impact of spares policies were  
not included here. At times, some projects view schedule as the "foremost among equals". It is viewed  
as the most critical variable. This is sometimes referred to in the literature as meeting a "window of  
opportunity", suggesting it opens for a short time and then closes forever. The data from these two  
projects suggest this market driven view may not be correct.  System A was reviewed by management in  
this light and the decision was still made to move to "capture the window". History has now shown  
that for this system a greatly extended "window of opportunity" developed and new market  
applications evolved. In retrospect, a controlled release of System A might have been a better decision  
than the full release to "capture a window of opportunity".  This project did not make a profit  
until after the full second year in production, because of the high field failure and support costs. It also 
had a strong impact on the engineering staff, who knew they were being asked to turn out a product that 
was less than the customers desired. Bt three years after release many of the key designers had left 
company A. 

System B was late to the market "window of opportunity", but well accepted by customers. 
Costs were better controlled than for System A and the staff at Company B did not feel they had been 
forced to turn out a bad product. Thus, the future purchase of new equipment was not ruled out as it 
appeared to be with a number of early purchasers of System A. 
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